T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
Mol Cell. 2021 May 6;81(9):1988-1999.e4. doi: 10.1016/j.molcel.2021.02.019. Epub 2021 Mar 10.
Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.
细菌小 RNA(sRNA)通过 Hfq 伴侣蛋白介导的碱基配对来调节数百个转录本的表达。sRNA 和它们靶向的 mRNA 位点在序列、长度和二级结构上是异构的。为了了解 Hfq 如何灵活地匹配不同的 sRNA 和 mRNA 对,我们开发了一种单分子Förster 共振能量转移(smFRET)平台,可在与细胞内相关的时间尺度上可视化目标搜索。在这里,我们表明,靶标二级结构在 Hfq 上的展开会产生一个动力学能量障碍,该障碍决定了在形成稳定的反义复合物之前,目标识别是成功还是中止。sRNA 的过早解离可以通过 RNA-Hfq 相互作用得到缓解,这解释了为什么 sRNA 具有不同的靶标识别特征。我们提出,Hfq 底物的不同序列和结构为非编码 RNA 调控在细菌中的效率和选择性提供了额外的信息层。