Suppr超能文献

分步靶向细菌 mRNA 的 sRNA 导致无效退火。

Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing.

机构信息

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Mol Cell. 2021 May 6;81(9):1988-1999.e4. doi: 10.1016/j.molcel.2021.02.019. Epub 2021 Mar 10.

Abstract

Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.

摘要

细菌小 RNA(sRNA)通过 Hfq 伴侣蛋白介导的碱基配对来调节数百个转录本的表达。sRNA 和它们靶向的 mRNA 位点在序列、长度和二级结构上是异构的。为了了解 Hfq 如何灵活地匹配不同的 sRNA 和 mRNA 对,我们开发了一种单分子Förster 共振能量转移(smFRET)平台,可在与细胞内相关的时间尺度上可视化目标搜索。在这里,我们表明,靶标二级结构在 Hfq 上的展开会产生一个动力学能量障碍,该障碍决定了在形成稳定的反义复合物之前,目标识别是成功还是中止。sRNA 的过早解离可以通过 RNA-Hfq 相互作用得到缓解,这解释了为什么 sRNA 具有不同的靶标识别特征。我们提出,Hfq 底物的不同序列和结构为非编码 RNA 调控在细菌中的效率和选择性提供了额外的信息层。

相似文献

1
Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing.分步靶向细菌 mRNA 的 sRNA 导致无效退火。
Mol Cell. 2021 May 6;81(9):1988-1999.e4. doi: 10.1016/j.molcel.2021.02.019. Epub 2021 Mar 10.
6
Competition among Hfq-binding small RNAs in Escherichia coli.在大肠杆菌中 Hfq 结合小 RNA 之间的竞争。
Mol Microbiol. 2011 Dec;82(6):1545-62. doi: 10.1111/j.1365-2958.2011.07907.x. Epub 2011 Nov 20.
9
Cycling of RNAs on Hfq.RNA 在 Hfq 上的循环。
RNA Biol. 2013 Apr;10(4):619-26. doi: 10.4161/rna.24044. Epub 2013 Mar 6.

引用本文的文献

1
Competition for Hfq drives kinetic selection of mRNA targets by small noncoding RNAs.对Hfq的竞争驱动小非编码RNA对mRNA靶标的动力学选择。
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2503747122. doi: 10.1073/pnas.2503747122. Epub 2025 Jul 10.
9
Dynamic Refolding of OxyS sRNA by the Hfq RNA Chaperone.Hfq RNA 伴侣蛋白对OxyS sRNA 的动态重折叠。
J Mol Biol. 2022 Sep 30;434(18):167776. doi: 10.1016/j.jmb.2022.167776. Epub 2022 Aug 4.

本文引用的文献

1
mRNA structural dynamics shape Argonaute-target interactions.mRNA 结构动力学塑造 Argonaute 靶标相互作用。
Nat Struct Mol Biol. 2020 Sep;27(9):790-801. doi: 10.1038/s41594-020-0461-1. Epub 2020 Jul 13.
5
Hfq chaperone brings speed dating to bacterial sRNA.Hfq 伴侣蛋白为细菌 sRNA 带来了速配约会。
Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1475. doi: 10.1002/wrna.1475. Epub 2018 Apr 6.
6
Metals induce transient folding and activation of the twister ribozyme.金属诱导扭曲核酶的瞬时折叠和激活。
Nat Chem Biol. 2017 Oct;13(10):1109-1114. doi: 10.1038/nchembio.2459. Epub 2017 Aug 21.
7
RNA-based recognition and targeting: sowing the seeds of specificity.基于 RNA 的识别和靶向:播下特异性的种子。
Nat Rev Mol Cell Biol. 2017 Apr;18(4):215-228. doi: 10.1038/nrm.2016.174. Epub 2017 Feb 15.
10
The target spectrum of SdsR small RNA in Salmonella.沙门氏菌中SdsR小RNA的靶标谱。
Nucleic Acids Res. 2016 Dec 1;44(21):10406-10422. doi: 10.1093/nar/gkw632. Epub 2016 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验