Suppr超能文献

自然的双目深度辨别行为在小鼠中通过视觉皮层活动得到解释。

Natural binocular depth discrimination behavior in mice explained by visual cortical activity.

机构信息

University of Louisville, School of Medicine, Department of Anatomical Sciences and Neurobiology, 511 S. Floyd St., Louisville, KY 40202, USA.

The University of Texas at Austin, Center for Learning and Memory and The Institute for Neuroscience, 100 E 24(th) St., Austin, Texas 78712, USA.

出版信息

Curr Biol. 2021 May 24;31(10):2191-2198.e3. doi: 10.1016/j.cub.2021.02.031. Epub 2021 Mar 10.

Abstract

In mice and other mammals, forebrain neurons integrate right and left eye information to generate a three-dimensional representation of the visual environment. Neurons in the visual cortex of mice are sensitive to binocular disparity, yet it is unclear whether that sensitivity is linked to the perception of depth. We developed a natural task based on the classic visual cliff and pole descent tasks to estimate the psychophysical range of mouse depth discrimination. Mice with binocular vision descended to a near (shallow) surface more often when surrounding far (deep) surfaces were progressively more distant. Occlusion of one eye severely impaired their ability to target the near surface. We quantified the distance at which animals make their decisions to estimate the binocular image displacement of the checkerboard pattern on the near and far surfaces. Then, we assayed the disparity sensitivity of large populations of binocular neurons in primary visual cortex (V1) using two-photon microscopy and quantitatively compared this information available in V1 to their behavioral sensitivity. Disparity information in V1 matches the behavioral performance over the range of depths examined and was resistant to changes in binocular alignment. These findings reveal that mice naturally use stereoscopic cues to guide their behavior and indicate a neural basis for this depth discrimination task.

摘要

在老鼠和其他哺乳动物中,前脑神经元整合左右眼信息,以生成视觉环境的三维表示。老鼠视觉皮层中的神经元对双眼视差敏感,但尚不清楚这种敏感性是否与深度感知有关。我们开发了一种基于经典视觉悬崖和杆下降任务的自然任务,以估计老鼠深度辨别力的心理物理范围。当周围的远表面(深表面)逐渐变远时,具有双目视觉的老鼠更频繁地下降到近表面(浅表面)。一只眼睛被遮挡严重削弱了它们瞄准近表面的能力。我们量化了动物做出决策的距离,以估计近表面和远表面上棋盘格图案的双目图像位移。然后,我们使用双光子显微镜对初级视觉皮层 (V1) 中的大量双目神经元进行了视差敏感性检测,并将 V1 中的这些信息与它们的行为敏感性进行了定量比较。V1 中的视差信息与所检查的深度范围内的行为表现相匹配,并且不受双目对准变化的影响。这些发现表明,老鼠自然会使用立体线索来指导它们的行为,并为这项深度辨别任务提供了神经基础。

相似文献

1
Natural binocular depth discrimination behavior in mice explained by visual cortical activity.
Curr Biol. 2021 May 24;31(10):2191-2198.e3. doi: 10.1016/j.cub.2021.02.031. Epub 2021 Mar 10.
2
Mice Discriminate Stereoscopic Surfaces Without Fixating in Depth.
J Neurosci. 2019 Oct 9;39(41):8024-8037. doi: 10.1523/JNEUROSCI.0895-19.2019. Epub 2019 Aug 28.
3
Disparity Sensitivity and Binocular Integration in Mouse Visual Cortex Areas.
J Neurosci. 2020 Nov 11;40(46):8883-8899. doi: 10.1523/JNEUROSCI.1060-20.2020. Epub 2020 Oct 13.
4
Human primary visual cortex shows larger population receptive fields for binocular disparity-defined stimuli.
Brain Struct Funct. 2021 Dec;226(9):2819-2838. doi: 10.1007/s00429-021-02351-3. Epub 2021 Aug 4.
5
Binocular integration and disparity selectivity in mouse primary visual cortex.
J Neurophysiol. 2013 Jun;109(12):3013-24. doi: 10.1152/jn.01021.2012. Epub 2013 Mar 20.
6
Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity.
J Neurosci. 1988 Dec;8(12):4531-50. doi: 10.1523/JNEUROSCI.08-12-04531.1988.
8
Area-Specific Mapping of Binocular Disparity across Mouse Visual Cortex.
Curr Biol. 2019 Sep 9;29(17):2954-2960.e5. doi: 10.1016/j.cub.2019.07.037. Epub 2019 Aug 15.
9
Strong tuning for stereoscopic depth indicates orientation-specific recurrent circuitry in tree shrew V1.
Curr Biol. 2022 Dec 19;32(24):5274-5284.e6. doi: 10.1016/j.cub.2022.10.063. Epub 2022 Nov 22.
10
Early computational processing in binocular vision and depth perception.
Prog Biophys Mol Biol. 2005 Jan;87(1):77-108. doi: 10.1016/j.pbiomolbio.2004.06.005.

引用本文的文献

1
Hidden Markov models reveal behavioral state dynamics in depth-related locomotion in mice.
PLoS One. 2025 Aug 26;20(8):e0329367. doi: 10.1371/journal.pone.0329367. eCollection 2025.
2
Characterization of depth perception information inferred from neuronal activity in primary visual cortex.
PLoS One. 2025 Aug 7;20(8):e0329788. doi: 10.1371/journal.pone.0329788. eCollection 2025.
3
Cell-type specific binocular interactions in mouse visual thalamus.
iScience. 2025 Jun 19;28(7):112956. doi: 10.1016/j.isci.2025.112956. eCollection 2025 Jul 18.
4
A column-like organization for ocular dominance in mouse visual cortex.
Nat Commun. 2025 Feb 25;16(1):1926. doi: 10.1038/s41467-025-56780-3.
5
Making stereopsis related to the ability of ocular deviation: a new paradigm for assessment of intermittent exotropia.
Int J Ophthalmol. 2025 Feb 18;18(2):308-314. doi: 10.18240/ijo.2025.02.15. eCollection 2025.
6
A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics.
Nat Neurosci. 2025 Mar;28(3):627-639. doi: 10.1038/s41593-025-01874-w. Epub 2025 Feb 10.
7
Pictorial depth cues elicit the perception of tridimensionality in dogs.
Anim Cogn. 2024 Jul 22;27(1):49. doi: 10.1007/s10071-024-01887-1.
8
Natural visual behavior and active sensing in the mouse.
Curr Opin Neurobiol. 2024 Jun;86:102882. doi: 10.1016/j.conb.2024.102882. Epub 2024 May 4.
9
A pupillary contrast response in mice and humans: Neural mechanisms and visual functions.
Neuron. 2024 Jul 17;112(14):2404-2422.e9. doi: 10.1016/j.neuron.2024.04.012. Epub 2024 May 1.
10
From innate to instructed: A new look at perceptual decision-making.
Curr Opin Neurobiol. 2024 Jun;86:102871. doi: 10.1016/j.conb.2024.102871. Epub 2024 Apr 3.

本文引用的文献

1
Disparity Sensitivity and Binocular Integration in Mouse Visual Cortex Areas.
J Neurosci. 2020 Nov 11;40(46):8883-8899. doi: 10.1523/JNEUROSCI.1060-20.2020. Epub 2020 Oct 13.
2
Vision: How Mice Control Their View.
Curr Biol. 2020 Jun 8;30(11):R635-R637. doi: 10.1016/j.cub.2020.04.063.
3
Two Distinct Types of Eye-Head Coupling in Freely Moving Mice.
Curr Biol. 2020 Jun 8;30(11):2116-2130.e6. doi: 10.1016/j.cub.2020.04.042. Epub 2020 May 14.
4
Understanding the retinal basis of vision across species.
Nat Rev Neurosci. 2020 Jan;21(1):5-20. doi: 10.1038/s41583-019-0242-1. Epub 2019 Nov 28.
5
Mice Discriminate Stereoscopic Surfaces Without Fixating in Depth.
J Neurosci. 2019 Oct 9;39(41):8024-8037. doi: 10.1523/JNEUROSCI.0895-19.2019. Epub 2019 Aug 28.
6
Area-Specific Mapping of Binocular Disparity across Mouse Visual Cortex.
Curr Biol. 2019 Sep 9;29(17):2954-2960.e5. doi: 10.1016/j.cub.2019.07.037. Epub 2019 Aug 15.
7
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
Nat Neurosci. 2018 Sep;21(9):1281-1289. doi: 10.1038/s41593-018-0209-y. Epub 2018 Aug 20.
8
Downregulation of splicing regulator RBFOX1 compromises visual depth perception.
PLoS One. 2018 Jul 12;13(7):e0200417. doi: 10.1371/journal.pone.0200417. eCollection 2018.
9
Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina.
J Comp Neurol. 2019 Jan 1;527(1):259-269. doi: 10.1002/cne.24457. Epub 2018 Dec 19.
10
Inhomogeneous Encoding of the Visual Field in the Mouse Retina.
Curr Biol. 2018 Mar 5;28(5):655-665.e3. doi: 10.1016/j.cub.2018.01.016. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验