Young Researchers and Elites Club, Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran.
Research and Development Laboratory, PRE Labs Inc., #100-2600 Enterprise Way, Kelowna, British Columbia V1X 7Y5, Canada.
Int J Biol Macromol. 2021 Jun 1;180:439-457. doi: 10.1016/j.ijbiomac.2021.02.204. Epub 2021 Mar 8.
In this approach, we assembled AgNps on cotton by using iota-carrageenan as a carbohydrate polymer under ultrasonic waves. UV-Vis spectroscopy revealed that iota-carrageenan free radicals increased the absorbance values of AgNps at 438 nm under ultrasonic vibration. We also observed an effective reduction of AgNps by color hue changes in the colloidal dispersions, ranging from pale to dark yellow. Interestingly, the zeta potential values for the AgNps changed from -8.5 to -45.7 mV after incorporation with iota-carrageenan. Moreover, iota-carrageenan reduced the average particle sizes of AgNps/iota-carrageenan nanocomposite particles. Fourier transform infrared (FTIR) spectra proved the successful fabrication of AgNps/iota-carrageenan/cotton nanocomposites by shifting two bands at 3257 and 990 cm. Quantum Chemistry and Molecular Dynamics demonstrated strong interactions between AgNps and iota-carrageenan by changes in the bond lengths for CC, CH, CO, SO. Furthermore, new energy levels were generated in iota-carrageenan's molecules by exciting electrons under ultrasonic vibration. According to the thermal gravimetric analysis (TGA) results, fabrication of AgNps/iota-carrageenan on cotton reduced the thermal stability of the resultant AgNps/iota-carrageenan/cotton nanocomposites. The average friction coefficient values of nanocomposite samples were increased in weft-to-warp direction that can be an advantage for wound healing, antimicrobial treatment and drug delivery applications. We did not observe reduction in the mechanical properties of our AgNps incorporated nanocomposites. Furthermore, the samples were tested for possible cytotoxicity against primary human skin fibroblast cells and no toxicity was observed.
在这种方法中,我们使用iota-卡拉胶作为碳水化合物聚合物,在超声波作用下将 AgNps 组装在棉花上。紫外可见光谱显示,在超声波振动下,iota-卡拉胶自由基增加了 AgNps 在 438nm 处的吸光度值。我们还观察到胶体分散体中 AgNps 的颜色从浅黄色变为深黄色,这表明 AgNps 被有效还原。有趣的是,加入 iota-卡拉胶后,AgNps 的 zeta 电位值从-8.5mV 变为-45.7mV。此外,iota-卡拉胶降低了 AgNps/iota-卡拉胶纳米复合材料颗粒的平均粒径。傅里叶变换红外(FTIR)光谱证明了 AgNps/iota-卡拉胶/棉纳米复合材料的成功制备,这是通过在 3257 和 990cm 处的两个带的移动来证明的。量子化学和分子动力学通过改变 CC、CH、CO、SO 的键长证明了 AgNps 和 iota-卡拉胶之间的强相互作用。此外,在超声波振动下,电子被激发,iota-卡拉胶的分子中产生了新的能级。根据热重分析(TGA)结果,AgNps/iota-卡拉胶在棉上的制备降低了所得 AgNps/iota-卡拉胶/棉纳米复合材料的热稳定性。在纬纱到经纱方向上,纳米复合材料样品的平均摩擦系数值增加,这可能有利于伤口愈合、抗菌处理和药物输送应用。我们没有观察到我们的 AgNps 掺入纳米复合材料的机械性能下降。此外,对原代人皮肤成纤维细胞进行了可能的细胞毒性测试,没有观察到毒性。