Suppr超能文献

事件相关成分在结构上由固有事件相关电位表示。

Event-related components are structurally represented by intrinsic event-related potentials.

机构信息

Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.

Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan, Taiwan.

出版信息

Sci Rep. 2021 Mar 11;11(1):5670. doi: 10.1038/s41598-021-85235-0.

Abstract

The detection of event-related potentials (ERPs) through electroencephalogram (EEG) analysis is a well-established method for understanding brain functions during a cognitive process. To increase the signal-to-noise ratio (SNR) and stationarity of the data, ERPs are often filtered to a wideband frequency range, such as 0.05-30 Hz. Alternatively, a natural-filtering procedure can be performed through empirical mode decomposition (EMD), which yields intrinsic mode functions (IMFs) for each trial of the EEG data, followed by averaging over trials to generate the event-related modes. However, although the EMD-based filtering procedure has advantages such as a high SNR, suitable waveform shape, and high statistical power, one fundamental drawback of the procedure is that it requires the selection of an IMF (or a partial sum of a range of IMFs) to determine an ERP component effectively. Therefore, in this study, we propose an intrinsic ERP (iERP) method to overcome the drawbacks and retain the advantages of event-related mode analysis for investigating ERP components. The iERP method can reveal multiple ERP components at their characteristic time scales and suitably cluster statistical effects among modes by using a tailored definition of each mode's neighbors. We validated the iERP method by using realistic EEG data sets acquired from a face perception task and visual working memory task. By using these two data sets, we demonstrated how to apply the iERP method to a cognitive task and incorporate existing cluster-based tests into iERP analysis. Moreover, iERP analysis revealed the statistical effects between (or among) experimental conditions more effectively than the conventional ERP method did.

摘要

通过脑电图(EEG)分析检测事件相关电位(ERPs)是理解认知过程中大脑功能的一种成熟方法。为了提高数据的信噪比(SNR)和稳定性,通常将 ERPs 过滤到较宽的频带范围,例如 0.05-30 Hz。或者,可以通过经验模态分解(EMD)进行自然滤波过程,该过程为 EEG 数据的每个试验产生固有模态函数(IMF),然后通过试验平均生成事件相关模式。然而,尽管基于 EMD 的滤波过程具有 SNR 高、波形形状合适、统计能力强等优点,但该过程存在一个基本缺点,即需要选择 IMF(或 IMF 的一部分)来有效地确定 ERP 分量。因此,在本研究中,我们提出了一种内在 ERP(iERP)方法来克服这些缺点,并保留事件相关模式分析用于研究 ERP 分量的优势。iERP 方法可以通过使用每个模式的邻居的定制定义来揭示多个 ERP 分量在其特征时间尺度上的特征,并适当地对模式之间的统计效应进行聚类。我们使用来自面部感知任务和视觉工作记忆任务的真实 EEG 数据集验证了 iERP 方法。通过使用这两个数据集,我们演示了如何将 iERP 方法应用于认知任务,并将现有的基于聚类的测试纳入 iERP 分析中。此外,iERP 分析比传统的 ERP 方法更有效地揭示了实验条件之间(或之间)的统计效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/370a/7970958/a80bc906ecfc/41598_2021_85235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验