Suppr超能文献

具有高阶相互作用的合作网络的多层表示。

Multilayer representation of collaboration networks with higher-order interactions.

作者信息

Vasilyeva E, Kozlov A, Alfaro-Bittner K, Musatov D, Raigorodskii A M, Perc M, Boccaletti S

机构信息

Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141701, Moscow, Russia.

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prosp., 119991, Moscow, Russia.

出版信息

Sci Rep. 2021 Mar 11;11(1):5666. doi: 10.1038/s41598-021-85133-5.

Abstract

Collaboration patterns offer important insights into how scientific breakthroughs and innovations emerge in small and large research groups. However, links in traditional networks account only for pairwise interactions, thus making the framework best suited for the description of two-person collaborations, but not for collaborations in larger groups. We therefore study higher-order scientific collaboration networks where a single link can connect more than two individuals, which is a natural description of collaborations entailing three or more people. We also consider different layers of these networks depending on the total number of collaborators, from one upwards. By doing so, we obtain novel microscopic insights into the representativeness of researchers within different teams and their links with others. In particular, we can follow the maturation process of the main topological features of collaboration networks, as we consider the sequence of graphs obtained by progressively merging collaborations from smaller to bigger sizes starting from the single-author ones. We also perform the same analysis by using publications instead of researchers as network nodes, obtaining qualitatively the same insights and thus confirming their robustness. We use data from the arXiv to obtain results specific to the fields of physics, mathematics, and computer science, as well as to the entire coverage of research fields in the database.

摘要

合作模式为科学突破与创新如何在小型和大型研究团队中产生提供了重要见解。然而,传统网络中的联系仅考虑两两之间的互动,因此该框架最适合描述两人合作,而不适用于更大团队中的合作。因此,我们研究高阶科学合作网络,其中一条链接可以连接两个以上的个体,这是对涉及三人或更多人的合作的自然描述。我们还根据合作者的总数(从一人开始向上)考虑这些网络的不同层次。通过这样做,我们对不同团队中研究人员的代表性及其与他人的联系获得了全新的微观见解。特别是,当我们考虑从单作者合作开始,将合作从较小规模逐步合并到较大规模而得到的一系列图时,我们可以追踪合作网络主要拓扑特征的成熟过程。我们还通过使用出版物而非研究人员作为网络节点来进行相同的分析,在定性上获得了相同的见解,从而证实了这些见解的稳健性。我们使用来自arXiv的数据来获得特定于物理、数学和计算机科学领域以及数据库中整个研究领域覆盖范围的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验