IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.
Department of Applied Physics and Mathematics, Columbia University, New York, NY, USA.
Nat Biomed Eng. 2021 Jun;5(6):613-623. doi: 10.1038/s41551-021-00689-x. Epub 2021 Mar 11.
The de novo design of antimicrobial therapeutics involves the exploration of a vast chemical repertoire to find compounds with broad-spectrum potency and low toxicity. Here, we report an efficient computational method for the generation of antimicrobials with desired attributes. The method leverages guidance from classifiers trained on an informative latent space of molecules modelled using a deep generative autoencoder, and screens the generated molecules using deep-learning classifiers as well as physicochemical features derived from high-throughput molecular dynamics simulations. Within 48 days, we identified, synthesized and experimentally tested 20 candidate antimicrobial peptides, of which two displayed high potency against diverse Gram-positive and Gram-negative pathogens (including multidrug-resistant Klebsiella pneumoniae) and a low propensity to induce drug resistance in Escherichia coli. Both peptides have low toxicity, as validated in vitro and in mice. We also show using live-cell confocal imaging that the bactericidal mode of action of the peptides involves the formation of membrane pores. The combination of deep learning and molecular dynamics may accelerate the discovery of potent and selective broad-spectrum antimicrobials.
抗菌治疗药物的从头设计涉及探索广泛的化学物质库,以寻找具有广谱效力和低毒性的化合物。在这里,我们报告了一种有效的计算方法,用于生成具有所需属性的抗菌药物。该方法利用了经过信息丰富的分子潜在空间分类器的指导,该潜在空间使用深度生成式自动编码器进行建模,并使用深度学习分类器以及从高通量分子动力学模拟中得出的物理化学特征对生成的分子进行筛选。在 48 天内,我们鉴定、合成并实验测试了 20 种候选抗菌肽,其中两种对多种革兰氏阳性和革兰氏阴性病原体(包括多药耐药性肺炎克雷伯菌)表现出高活性,并且在大肠杆菌中诱导耐药性的倾向较低。这两种肽都具有低毒性,在体外和小鼠体内都得到了验证。我们还通过活细胞共聚焦成像显示,这些肽的杀菌作用模式涉及形成膜孔。深度学习和分子动力学的结合可能会加速强效和选择性广谱抗菌药物的发现。