Suppr超能文献

抗菌肽的计算机辅助设计:我们正在生成有效的候选药物吗?

Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates?

作者信息

Cardoso Marlon H, Orozco Raquel Q, Rezende Samilla B, Rodrigues Gisele, Oshiro Karen G N, Cândido Elizabete S, Franco Octávio L

机构信息

S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.

出版信息

Front Microbiol. 2020 Jan 22;10:3097. doi: 10.3389/fmicb.2019.03097. eCollection 2019.

Abstract

Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally occurring and synthetic AMPs have shown promising results against a series of clinically relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical trials at some point, highlighting the importance of AMP optimization. In this context, the computer-aided design of AMPs has put together crucial information on chemical parameters and bioactivities in AMP sequences, thus providing modes of prediction to evaluate the antibacterial potential of a candidate sequence before synthesis. Quantitative structure-activity relationship (QSAR) computational models, for instance, have greatly contributed to AMP sequence optimization aimed at improved biological activities. In addition to machine-learning methods, the design, linguistic model, pattern insertion methods, and genetic algorithms, have shown the potential to boost the automated design of AMPs. However, how successful have these approaches been in generating effective antibacterial drug candidates? Bearing this in mind, this review will focus on the main computational strategies that have generated AMPs with promising activities against pathogenic bacteria, as well as anti-infective potential in different animal models, including sepsis and cutaneous infections. Moreover, we will point out recent studies on the computer-aided design of antibiofilm peptides. As expected from automated design strategies, diverse candidate sequences with different structural arrangements have been generated and deposited in databases. We will, therefore, also discuss the structural diversity that has been engendered.

摘要

抗菌肽(AMPs),尤其是抗菌肽,作为基于抗生素疗法的潜在替代品已得到广泛研究。事实上,天然存在的和合成的抗菌肽已显示出对一系列临床相关细菌有良好效果。即便如此,这类抗菌剂在某些时候仍不断在临床试验中失败,这凸显了抗菌肽优化的重要性。在此背景下,抗菌肽的计算机辅助设计整合了抗菌肽序列中化学参数和生物活性的关键信息,从而提供了在合成前评估候选序列抗菌潜力的预测模式。例如,定量构效关系(QSAR)计算模型对旨在提高生物活性的抗菌肽序列优化有很大贡献。除了机器学习方法外,设计、语言模型、模式插入方法和遗传算法都显示出推动抗菌肽自动化设计的潜力。然而,这些方法在生成有效的抗菌药物候选物方面有多成功呢?考虑到这一点,本综述将聚焦于产生对病原菌有良好活性以及在包括败血症和皮肤感染在内的不同动物模型中有抗感染潜力的抗菌肽的主要计算策略。此外,我们将指出关于抗生物膜肽计算机辅助设计的最新研究。正如自动化设计策略所预期的那样,已经产生了具有不同结构排列的多种候选序列并存入数据库。因此,我们还将讨论由此产生的结构多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/789c/6987251/8e67bf4ca0c4/fmicb-10-03097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验