Suppr超能文献

使用卷积神经网络通过计算机断层扫描灌注参数识别梗死核心。

Use of a convolutional neural network to identify infarct core using computed tomography perfusion parameters.

作者信息

Rava Ryan A, Podgorsak Alexander R, Waqas Muhammad, Snyder Kenneth V, Levy Elad I, Davies Jason M, Siddiqui Adnan H, Ionita Ciprian N

机构信息

Department of Biomedical Engineering, University at Buffalo, Buffalo NY, 14260.

Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo NY, 14203.

出版信息

Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2579753. Epub 2021 Feb 15.

Abstract

PURPOSE

Computed tomography perfusion (CTP) is used to diagnose ischemic strokes through contralateral hemisphere comparisons of various perfusion parameters. Various perfusion parameter thresholds have been utilized to segment infarct tissue due to differences in CTP software and patient baseline hemodynamics. This study utilized a convolutional neural network (CNN) to eliminate the need for non-universal parameter thresholds to segment infarct tissue.

METHODS

CTP data from 63 ischemic stroke patients was retrospectively collected and perfusion parameter maps were generated using Vitrea CTP software. Infarct ground truth labels were segmented from diffusion-weighted imaging (DWI) and CTP and DWI volumes were registered. A U-net based CNN was trained and tested five separate times using each CTP parameter (cerebral blood flow (CBF), cerebral blood volume (CBV), time-to-peak (TTP), mean-transit-time (MTT), delay time). 8,352 infarct slices were utilized with a 60:30:10 training:testing:validation split and Monte Carlo cross-validation was conducted using 20 iterations. Infarct volumes were reconstructed following segmentation from each CTP slice. Infarct spatial and volumetric agreement was compared between each CTP parameter and DWI.

RESULTS

Spatial agreement metrics (Dice coefficient, positive predictive value) for each CTP parameter in predicting infarct volumes are: CBF=(0.67, 0.76), CBV=(0.44, 0.62), TTP=(0.60, 0.67), MTT=(0.58, 0.62), delay time=(0.57, 0.60). 95% confidence intervals for volume differences with DWI infarct are: CBF=14.3±11.5 mL, CBV=29.6±21.2 mL, TTP=7.7±15.2 mL, MTT=-10.7±18.6 mL, delay time=-5.7±23.6 mL.

CONCLUSIONS

CBF is the most accurate CTP parameter in segmenting infarct tissue. Segmentation of infarct using a CNN has the potential to eliminate non-universal CTP contralateral hemisphere comparison thresholds.

摘要

目的

计算机断层扫描灌注成像(CTP)通过对各种灌注参数进行对侧半球比较来诊断缺血性中风。由于CTP软件和患者基线血流动力学的差异,已采用各种灌注参数阈值来分割梗死组织。本研究利用卷积神经网络(CNN)来消除分割梗死组织时对非通用参数阈值的需求。

方法

回顾性收集63例缺血性中风患者的CTP数据,并使用Vitrea CTP软件生成灌注参数图。从扩散加权成像(DWI)中分割出梗死的真实标签,并对CTP和DWI体积进行配准。使用每个CTP参数(脑血流量(CBF)、脑血容量(CBV)、达峰时间(TTP)、平均通过时间(MTT)、延迟时间)对基于U-net的CNN进行五次独立的训练和测试。使用8352个梗死切片,按照60:30:10的比例进行训练:测试:验证分割,并使用20次迭代进行蒙特卡洛交叉验证。从每个CTP切片分割后重建梗死体积。比较每个CTP参数与DWI之间梗死的空间和体积一致性。

结果

每个CTP参数在预测梗死体积时的空间一致性指标(骰子系数、阳性预测值)为:CBF =(0.67, 0.76),CBV =(0.44, 0.62),TTP =(0.60, 0.67),MTT =(0.58, 0.62),延迟时间 =(0.57, 0.60)。与DWI梗死体积差异的95%置信区间为:CBF = 14.3±11.5 mL,CBV = 29.6±21.2 mL,TTP = 7.7±15.2 mL,MTT = -10.7±18.6 mL,延迟时间 = -5.7±23.6 mL。

结论

CBF是分割梗死组织时最准确的CTP参数。使用CNN分割梗死有可能消除非通用的CTP对侧半球比较阈值。

相似文献

本文引用的文献

8
Thrombectomy 24 hours after stroke: beyond DAWN.卒中后 24 小时取栓:超越 DAWN。
J Neurointerv Surg. 2018 Nov;10(11):1039-1042. doi: 10.1136/neurintsurg-2018-013923. Epub 2018 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验