Suppr超能文献

使用计算机断层扫描灌注和深度学习识别梗死核心和缺血半暗带。

Identification of infarct core and ischemic penumbra using computed tomography perfusion and deep learning.

作者信息

Bhurwani Mohammad Mahdi Shiraz, Boutelier Timothe, Davis Adam, Gautier Guillaume, Swetz Dennis, Rava Ryan A, Raguenes Dorian, Waqas Muhammad, Snyder Kenneth V, Siddiqui Adnan H, Ionita Ciprian N

机构信息

University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States.

Canon Stroke and Vascular Research Center, Buffalo, New York, United States.

出版信息

J Med Imaging (Bellingham). 2023 Jan;10(1):014001. doi: 10.1117/1.JMI.10.1.014001. Epub 2023 Jan 9.

Abstract

PURPOSE

The size and location of infarct and penumbra are key to decision-making for acute ischemic stroke (AIS) management. CT perfusion (CTP) software estimate infarct and penumbra volume using contralateral hemisphere relative thresholding. This approach is not robust and widely contested by the scientific community. In this study, we investigate the use of deep learning-based algorithms to efficiently locate infarct and penumbra tissue on CTP hemodynamic maps.

APPROACH

CTP scans were retrospectively collected for 60 and 59 patients in the infarct only and infarct + penumbra substudies respectively. Commercial CTP software was used to generate cerebral blood flow, cerebral blood volume, mean transit time, time to peak, and delay time maps. U-Net-shaped architectures were trained to segment infarct or infarct + penumbra. Test-time-augmentation, ensembling, and watershed segmentation were used as postprocessing techniques. Segmentation performance was evaluated using Dice coefficients (DC) and mean absolute volume errors (MAVE).

RESULTS

The algorithm segmented infarct tissue resulted in DC of (0.63, 0.65), and MAVE of (4.5, 5.32) mL. In comparison, the commercial software predicted infarct with a DC of (0.26, 0.36) and MAVE of (7.12, 12.42) mL. The algorithm was able to segment infarct + penumbra with a DC of (0.6, 0.63), and MAVE of (5.91, 7.11) mL. In comparison, the commercial software predicted infarct + penumbra with a DC of (0.25, 0.35) and MAVE of (7.25, 11.11) mL.

CONCLUSIONS

Use of deep learning algorithms to assess severity of AIS in terms of infarct and penumbra volume is precise and outperforms current relative thresholding methods. Such an algorithm would enhance the reliability of CTP in guiding treatment decisions.

摘要

目的

梗死灶和半暗带的大小及位置是急性缺血性卒中(AIS)治疗决策的关键。CT灌注(CTP)软件使用对侧半球相对阈值法估算梗死灶和半暗带体积。这种方法并不稳健,且受到科学界的广泛质疑。在本研究中,我们探讨使用基于深度学习的算法在CTP血流动力学图上有效定位梗死灶和半暗带组织。

方法

分别对梗死灶组和梗死灶+半暗带组的60例和59例患者进行CTP扫描回顾性收集。使用商用CTP软件生成脑血流量、脑血容量、平均通过时间、达峰时间和延迟时间图。训练U-Net形状的架构以分割梗死灶或梗死灶+半暗带。测试时增强、集成和分水岭分割用作后处理技术。使用Dice系数(DC)和平均绝对体积误差(MAVE)评估分割性能。

结果

算法分割梗死灶组织的DC为(0.63,0.65),MAVE为(4.5,5.32)mL。相比之下,商用软件预测梗死灶的DC为(0.26,0.36),MAVE为(7.12,12.42)mL。该算法能够分割梗死灶+半暗带,DC为(0.6,0.63),MAVE为(5.91,7.11)mL。相比之下,商用软件预测梗死灶+半暗带的DC为(0.25,0.35),MAVE为(7.25,11.11)mL。

结论

使用深度学习算法根据梗死灶和半暗带体积评估AIS严重程度精确,且优于当前的相对阈值法。这样的算法将提高CTP在指导治疗决策方面的可靠性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验