Müller Sara, Manger Felix, Graf von Reventlow Lorenz, Colsmann Alexander, Wagenknecht Hans-Achim
Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Material Research Center for Energy Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Front Chem. 2021 Feb 23;9:645006. doi: 10.3389/fchem.2021.645006. eCollection 2021.
Supramolecular chemistry allows the construction of complex molecular architectures and the design of collective photophysical properties. DNA is an attractive template to build such supramolecular architectures due to its helical structure, the defined distances between the bases and the canonical base pairing that results in precise control of the chromophore position. The tailored properties of DNA-templated supramolecules eventually allow their implementation into optoelectronic applications. For the generation of free charge carriers from photo-generated excitons, fullerenes can be utilized. We synthesized two fullerene derivates, one of which binds by electrostatic interactions to single-stranded DNA, while the other contains two 2'-deoxyuridine moieties and assembles specifically along oligo-2'-deoxyadenosines (dA) as DNA template. The DNA-directed assembly of both fullerenes in aqueous solution was investigated by UV/Vis absorbance and circular dichroism (CD) spectroscopy. The specific interactions with DNA make fullerenes with the 2'-deoxyuridine moieties a significantly better component for supramolecular DNA architectures. We studied the fluorescence quenching of both fullerenes with a DNA chromophore assembly. To investigate one of the key properties for optoelectronic applications, that is the supramolecular structure of the DNA-based assemblies in the solid phase, we characterized the CD of supramolecular chromophore-DNA architectures in thin films. Remarkably, the helical chirality of the chromophore assemblies that is induced by the DNA template is conserved even in the solid state. Upon implementation into organic solar cells, the external quantum efficiency measurements showed charge carrier generation on all three chromophore components of the DNA assemblies. The fullerenes with the 2'-deoxyuridine moieties enhance the quantum efficiency of the conversion process significantly, demonstrating the potential of DNA as structural element for ordering chromophores into functional π-systems, which may be employed in future organic solar cells.
超分子化学能够构建复杂的分子结构,并设计其集体光物理性质。DNA因其螺旋结构、碱基之间确定的距离以及能精确控制发色团位置的标准碱基配对,成为构建此类超分子结构的理想模板。DNA模板超分子的定制特性最终使其能够应用于光电子领域。为了从光生激子中产生自由电荷载流子,可以利用富勒烯。我们合成了两种富勒烯衍生物,其中一种通过静电相互作用与单链DNA结合,另一种含有两个2'-脱氧尿苷部分,并能以寡聚2'-脱氧腺苷(dA)作为DNA模板进行特异性组装。通过紫外可见吸收光谱和圆二色性(CD)光谱研究了两种富勒烯在水溶液中由DNA引导的组装过程。与DNA的特异性相互作用使得带有2'-脱氧尿苷部分的富勒烯成为超分子DNA结构中性能更优的组分。我们研究了两种富勒烯与DNA发色团组装体之间的荧光猝灭现象。为了研究光电子应用的关键特性之一,即固相基于DNA的组装体的超分子结构,我们对薄膜中超分子发色团-DNA结构的圆二色性进行了表征。值得注意的是,由DNA模板诱导的发色团组装体的螺旋手性即使在固态下也得以保留。将其应用于有机太阳能电池时,外部量子效率测量结果表明,DNA组装体的所有三种发色团组分都能产生电荷载流子。带有2'-脱氧尿苷部分的富勒烯显著提高了转换过程的量子效率,证明了DNA作为将发色团有序排列成功能性π体系的结构元素的潜力,这可能会应用于未来的有机太阳能电池。