Suppr超能文献

原子力显微镜在细胞和分子微生物学中的应用。

AFM in cellular and molecular microbiology.

机构信息

Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

出版信息

Cell Microbiol. 2021 Jul;23(7):e13324. doi: 10.1111/cmi.13324. Epub 2021 Mar 22.

Abstract

The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.

摘要

原子力显微镜(AFM)具有独特的能力,包括超分辨率成像、皮牛力灵敏度、纳米操作以及在生理条件下工作的能力,为细胞和分子生物学研究提供了令人兴奋的途径。AFM 成像有助于揭示微生物细胞包膜在纳米尺度上的精细结构,以及这些结构如何被抗菌处理所改变。纳米力学测量为单细胞的弹性、拉伸强度和膨压提供了新的认识。单分子和单细胞力谱实验揭示了受体-配体相互作用的力和动力学、细胞表面受体的纳米级分布以及细菌菌毛的弹性和粘附性。重要的是,最近的力谱研究表明,细菌黏附素与其同源配体之间形成了极其稳定的键,这种键源自一种捕获键行为,使病原体能够在剪切或拉伸应力下增强黏附。在这里,我们调查了 AFM 的多功能性如何使我们能够解决微生物学中的关键问题,重点是细菌病原体。要点:AFM 形貌成像揭示了细菌包膜的超微结构。纳米力学图谱显示了使细胞包膜坚硬并能抵抗药物的原因。力谱学表征了病原体黏附的分子力。拉伸菌毛揭示了丰富的机械和粘附反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验