Suppr超能文献

石墨烯量子点平铺中空多孔SiO负极的额外锂离子存储及快速锂离子传输

Extra Li-Ion Storage and Rapid Li-Ion Transfer of a Graphene Quantum Dot Tiling Hollow Porous SiO Anode.

作者信息

Wang Fei, Mao Jian

机构信息

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13191-13199. doi: 10.1021/acsami.0c22636. Epub 2021 Mar 12.

Abstract

Graphene is widely used to enhance the electrochemical performance of anodes. However, graphene tends to be vertical with the lithium-ion (Li) diffusion direction, and a few heterointerfaces are formed between graphene and active materials by point-to-point contact. Herein, a graphene quantum dots (GDs) tiling hollow porous SiO (HSiO@GDs) anode is predicted by density functional theory (DFT) and is achieved by experiments. Due to the ultrasmall size, the tiling of GDs would provide Li a rapid diffusion channel and abundant heterointerfaces (face-to-face contact) between the GDs and the hollow porous SiO (HSiO). Moreover, owing to the higher electrostatic potential of SiO, the large-scale local electrical field from GDs to HSiO is established at the heterointerfaces, which provide extra Li storage sites and further facilitate the Li transfer. To our knowledge, the HSiO@GDs shows the highest specific capacities at various current densities (such as ∼1100 mA h/g at 5 A/g and ∼2250 mA h/g at 0.2 A/g) among reported silicon oxides anodes and presents excellent cycling stability (∼1000 mA h/g after 2000 cycles at 3 A/g). Moreover, the design idea is available to design other widely studied graphene-containing anodes such as the Si, SnO, TiO, and MoS.

摘要

石墨烯被广泛用于增强阳极的电化学性能。然而,石墨烯往往与锂离子(Li)的扩散方向垂直,并且通过点对点接触在石墨烯与活性材料之间形成少量异质界面。在此,通过密度泛函理论(DFT)预测了一种石墨烯量子点(GDs)平铺的中空多孔SiO(HSiO@GDs)阳极,并通过实验实现。由于尺寸超小,GDs的平铺将为Li提供快速扩散通道以及GDs与中空多孔SiO(HSiO)之间丰富的异质界面(面对面接触)。此外,由于SiO的静电势较高,在异质界面处建立了从GDs到HSiO的大规模局部电场,这提供了额外的Li存储位点并进一步促进了Li的转移。据我们所知,在报道的氧化硅阳极中,HSiO@GDs在各种电流密度下(例如在5 A/g时约为1100 mA h/g,在0.2 A/g时约为2250 mA h/g)显示出最高的比容量,并呈现出优异的循环稳定性(在3 A/g下循环2000次后约为1000 mA h/g)。此外,该设计理念可用于设计其他广泛研究的含石墨烯阳极,如Si、SnO、TiO和MoS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验