Suppr超能文献

多尺度交互式递归网络时间序列预测。

A Multiscale Interactive Recurrent Network for Time-Series Forecasting.

出版信息

IEEE Trans Cybern. 2022 Sep;52(9):8793-8803. doi: 10.1109/TCYB.2021.3055951. Epub 2022 Aug 18.

Abstract

Time-series forecasting is a key component in the automation and optimization of intelligent applications. It is not a trivial task, as there are various short-term and/or long-term temporal dependencies. Multiscale modeling has been considered as a promising strategy to solve this problem. However, the existing multiscale models either apply an implicit way to model the temporal dependencies or ignore the interrelationships between multiscale subseries. In this article, we propose a multiscale interactive recurrent network (MiRNN) to jointly capture multiscale patterns. MiRNN employs a deep wavelet decomposition network to decompose the raw time series into multiscale subseries. MiRNN introduces three key strategies (truncation, initialization, and message passing) to model the inherent interrelationships between multiscale subseries, as well as a dual-stage attention mechanism to capture multiscale temporal dependencies. Experiments on four real-world datasets demonstrate that our model achieves promising performance compared with the state-of-the-art methods.

摘要

时间序列预测是智能应用自动化和优化的关键组成部分。这不是一项简单的任务,因为存在各种短期和/或长期的时间依赖关系。多尺度建模已被认为是解决这个问题的一种有前途的策略。然而,现有的多尺度模型要么采用隐式方式来建模时间依赖关系,要么忽略多尺度子序列之间的相互关系。在本文中,我们提出了一种多尺度交互递归网络(MiRNN)来联合捕获多尺度模式。MiRNN 采用深度小波分解网络将原始时间序列分解为多尺度子序列。MiRNN 引入了三种关键策略(截断、初始化和消息传递)来建模多尺度子序列之间的固有相互关系,以及双阶段注意力机制来捕获多尺度时间依赖关系。在四个真实数据集上的实验表明,与最先进的方法相比,我们的模型具有有竞争力的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验