Suppr超能文献

炎症在胰岛素抵抗和精神分裂症中潜在的共同作用:一项双向两样本孟德尔随机化研究。

The potential shared role of inflammation in insulin resistance and schizophrenia: A bidirectional two-sample mendelian randomization study.

机构信息

Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, England.

Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, England.

出版信息

PLoS Med. 2021 Mar 12;18(3):e1003455. doi: 10.1371/journal.pmed.1003455. eCollection 2021 Mar.

Abstract

BACKGROUND

Insulin resistance predisposes to cardiometabolic disorders, which are commonly comorbid with schizophrenia and are key contributors to the significant excess mortality in schizophrenia. Mechanisms for the comorbidity remain unclear, but observational studies have implicated inflammation in both schizophrenia and cardiometabolic disorders separately. We aimed to examine whether there is genetic evidence that insulin resistance and 7 related cardiometabolic traits may be causally associated with schizophrenia, and whether evidence supports inflammation as a common mechanism for cardiometabolic disorders and schizophrenia.

METHODS AND FINDINGS

We used summary data from genome-wide association studies of mostly European adults from large consortia (Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) featuring up to 108,557 participants; Diabetes Genetics Replication And Meta-analysis (DIAGRAM) featuring up to 435,387 participants; Global Lipids Genetics Consortium (GLGC) featuring up to 173,082 participants; Genetic Investigation of Anthropometric Traits (GIANT) featuring up to 339,224 participants; Psychiatric Genomics Consortium (PGC) featuring up to 105,318 participants; and Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium featuring up to 204,402 participants). We conducted two-sample uni- and multivariable mendelian randomization (MR) analysis to test whether (i) 10 cardiometabolic traits (fasting insulin, high-density lipoprotein and triglycerides representing an insulin resistance phenotype, and 7 related cardiometabolic traits: low-density lipoprotein, fasting plasma glucose, glycated haemoglobin, leptin, body mass index, glucose tolerance, and type 2 diabetes) could be causally associated with schizophrenia; and (ii) inflammation could be a shared mechanism for these phenotypes. We conducted a detailed set of sensitivity analyses to test the assumptions for a valid MR analysis. We did not find statistically significant evidence in support of a causal relationship between cardiometabolic traits and schizophrenia, or vice versa. However, we report that a genetically predicted inflammation-related insulin resistance phenotype (raised fasting insulin (raised fasting insulin (Wald ratio OR = 2.95, 95% C.I, 1.38-6.34, Holm-Bonferroni corrected p-value (p) = 0.035) and lower high-density lipoprotein (Wald ratio OR = 0.55, 95% C.I., 0.36-0.84; p = 0.035)) was associated with schizophrenia. Evidence for these associations attenuated to the null in multivariable MR analyses after adjusting for C-reactive protein, an archetypal inflammatory marker: (fasting insulin Wald ratio OR = 1.02, 95% C.I, 0.37-2.78, p = 0.975), high-density lipoprotein (Wald ratio OR = 1.00, 95% C.I., 0.85-1.16; p = 0.849), suggesting that the associations could be fully explained by inflammation. One potential limitation of the study is that the full range of gene products from the genetic variants we used as proxies for the exposures is unknown, and so we are unable to comment on potential biological mechanisms of association other than inflammation, which may also be relevant.

CONCLUSIONS

Our findings support a role for inflammation as a common cause for insulin resistance and schizophrenia, which may at least partly explain why the traits commonly co-occur in clinical practice. Inflammation and immune pathways may represent novel therapeutic targets for the prevention or treatment of schizophrenia and comorbid insulin resistance. Future work is needed to understand how inflammation may contribute to the risk of schizophrenia and insulin resistance.

摘要

背景

胰岛素抵抗易导致代谢紊乱,这些疾病常与精神分裂症共病,也是导致精神分裂症患者死亡率显著升高的主要原因。其发病机制仍不清楚,但观察性研究表明,炎症在精神分裂症和代谢紊乱中均有涉及。本研究旨在探究胰岛素抵抗和 7 种相关代谢特征是否与精神分裂症存在因果关系,以及炎症是否是代谢紊乱和精神分裂症的共同发病机制。

方法和发现

我们使用了来自大型联盟的欧洲成年人的全基因组关联研究的汇总数据(MAGIC 荟萃分析包含了多达 108557 名参与者;DIAGRAM 荟萃分析包含了多达 435387 名参与者;GLGC 全球脂质遗传学联盟包含了多达 173082 名参与者;GIANT 遗传与人体测量特征研究包含了多达 339224 名参与者;PGC 精神分裂症基因组学联盟包含了多达 105318 名参与者;CHARGE 合作研究(Cohorts for Heart and Aging Research in Genomic Epidemiology)包含了多达 204402 名参与者)。我们进行了两样本单变量和多变量孟德尔随机化(MR)分析,以检验以下假设:(i)10 种代谢特征(空腹胰岛素、高密度脂蛋白和甘油三酯,代表胰岛素抵抗表型,以及 7 种相关代谢特征:低密度脂蛋白、空腹血糖、糖化血红蛋白、瘦素、体重指数、葡萄糖耐量和 2 型糖尿病)是否与精神分裂症存在因果关系;(ii)炎症是否是这些表型的共同发病机制。我们进行了一系列详细的敏感性分析,以检验有效 MR 分析的假设。我们没有发现支持代谢特征与精神分裂症之间存在因果关系,或反之亦然的统计学证据。然而,我们报告称,遗传预测的炎症相关胰岛素抵抗表型(空腹胰岛素升高(Wald 比值 OR = 2.95,95%置信区间 1.38-6.34,经 Holm-Bonferroni 校正的 p 值(p)= 0.035)和高密度脂蛋白降低(Wald 比值 OR = 0.55,95%置信区间 0.36-0.84,p = 0.035))与精神分裂症相关。在多变量 MR 分析中,在调整 C 反应蛋白(典型炎症标志物)后,这些关联的证据减弱至无效:(空腹胰岛素 Wald 比值 OR = 1.02,95%置信区间 0.37-2.78,p = 0.975),高密度脂蛋白(Wald 比值 OR = 1.00,95%置信区间 0.85-1.16,p = 0.849),表明这些关联可能完全由炎症解释。研究的一个潜在局限性是,我们用作暴露替代物的遗传变异的全部基因产物尚不清楚,因此我们无法评论除炎症以外的潜在关联机制,炎症可能也是相关的。

结论

我们的研究结果支持炎症是胰岛素抵抗和精神分裂症的共同发病原因,这至少部分解释了为什么这些特征在临床实践中经常共病。炎症和免疫途径可能是预防或治疗精神分裂症和共病胰岛素抵抗的新治疗靶点。未来需要进一步研究以了解炎症如何导致精神分裂症和胰岛素抵抗的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab2/7954314/bca51aa72f0e/pmed.1003455.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验