Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan.
Research Division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan.
Sci Rep. 2021 Mar 12;11(1):5852. doi: 10.1038/s41598-021-85274-7.
Molecular evolution is an important step in the development of therapeutic antibodies. However, the current method of affinity maturation is overly costly and labor-intensive because of the repetitive mutation experiments needed to adequately explore sequence space. Here, we employed a long short term memory network (LSTM)-a widely used deep generative model-based sequence generation and prioritization procedure to efficiently discover antibody sequences with higher affinity. We applied our method to the affinity maturation of antibodies against kynurenine, which is a metabolite related to the niacin synthesis pathway. Kynurenine binding sequences were enriched through phage display panning using a kynurenine-binding oriented human synthetic Fab library. We defined binding antibodies using a sequence repertoire from the NGS data to train the LSTM model. We confirmed that likelihood of generated sequences from a trained LSTM correlated well with binding affinity. The affinity of generated sequences are over 1800-fold higher than that of the parental clone. Moreover, compared to frequency based screening using the same dataset, our machine learning approach generated sequences with greater affinity.
分子进化是治疗性抗体发展的重要步骤。然而,目前的亲和力成熟方法由于需要重复进行突变实验来充分探索序列空间,因此过于昂贵和耗费人力。在这里,我们采用了长短期记忆网络(LSTM)——一种广泛使用的基于深度生成模型的序列生成和优先级处理程序,以有效地发现具有更高亲和力的抗体序列。我们将我们的方法应用于针对犬尿氨酸的亲和力成熟,犬尿氨酸是与烟酸合成途径相关的代谢物。通过使用犬尿氨酸结合导向的人合成 Fab 文库进行噬菌体展示淘选,富集了犬尿氨酸结合序列。我们使用来自 NGS 数据的序列库来定义结合抗体,以训练 LSTM 模型。我们证实,从经过训练的 LSTM 生成的序列的可能性与结合亲和力很好地相关。生成序列的亲和力比亲本克隆高 1800 多倍。此外,与使用相同数据集的基于频率的筛选相比,我们的机器学习方法生成了具有更高亲和力的序列。