Kang Yue, Jin Kevin, Pan Lurong
Ainnocence Inc., Suite B PMB 1147, Mountain View, CA, 94040, USA.
Sci Rep. 2025 May 3;15(1):15533. doi: 10.1038/s41598-025-98979-w.
In this study, we developed a digital twin for SARS-CoV-2 by integrating diverse data and metadata with multiple data types and processing strategies, including machine learning, natural language processing, protein structural modeling, and protein sequence language modeling. This approach enabled us to computationally design neutralizing antibodies against over 1300 historical strains of SARS-CoV-2, encompassing 64 mutations in the receptor binding domain (RBD) region. 70 AI-designed antibodies were experimentally validated through binding assay and real viral neutralization assays against various strains, including later Omicron strains do not present in the initial design database. 14% of these antibodies exhibited strong reactivity against the RBD of multiple strains, achieving triple cross-binding hit rates using ELISA assay. 10 antibodies neutralized the cytopathic effects (CPE) of the Delta strain at IC50 values of < 10 µg/ml, and one antibody neutralized the CPE of Omicron. These findings demonstrate the potential of our approach to influence future therapeutic design for existing virus strains and predict hidden patterns in viral evolution that AI can leverage to develop emerging antiviral treatments.
在本研究中,我们通过整合具有多种数据类型和处理策略(包括机器学习、自然语言处理、蛋白质结构建模和蛋白质序列语言建模)的各种数据和元数据,开发了一种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的数字孪生模型。这种方法使我们能够通过计算设计针对超过1300种SARS-CoV-2历史毒株的中和抗体,这些毒株在受体结合域(RBD)区域包含64种突变。通过针对各种毒株(包括最初设计数据库中不存在的后来的奥密克戎毒株)的结合试验和实际病毒中和试验,对70种人工智能设计的抗体进行了实验验证。其中14%的抗体对多种毒株的RBD表现出强反应性,使用酶联免疫吸附测定(ELISA)法达到三重交叉结合命中率。10种抗体在IC50值<10μg/ml时中和了德尔塔毒株的细胞病变效应(CPE),一种抗体中和了奥密克戎毒株的CPE。这些发现证明了我们的方法在影响现有病毒株未来治疗设计以及预测病毒进化中人工智能可用于开发新兴抗病毒治疗的隐藏模式方面的潜力。