Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
Sachi Bioworks, Inc, Boulder, CO, 80301, USA.
Commun Biol. 2021 Mar 12;4(1):331. doi: 10.1038/s42003-021-01856-1.
Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.
多药耐药(MDR)细菌对全球健康构成严重威胁,而缺乏新的治疗方法和应对平台来对抗疫情或抗生素耐药性进一步加剧了这一问题。为了解决这一问题,我们开发了一种简便加速特异性治疗(FAST)平台,可以在一周内针对 MDR 细菌开发有效的肽核酸(PNA)疗法。我们的 FAST 平台使用生物信息学工具箱设计针对细菌非传统途径/基因的序列特异性 PNAs,然后进行原位合成、验证和选定 PNAs 的疗效测试。作为概念验证,这些 PNAs 针对五种 MDR 临床分离株进行了测试:耐碳青霉烯类大肠埃希菌、超广谱β-内酰胺酶肺炎克雷伯菌、携带新德里金属β-内酰胺酶-1 的肺炎克雷伯菌和多重耐药沙门氏菌。PNAs 对 82%的治疗方案显示出显著的生长抑制作用,近 18%的治疗方案导致抑制率超过 97%。此外,尽管存在同源耐药基因,这些 PNAs 仍能够增强临床分离株中的抗生素活性。最后,FAST 平台提供了一种新颖的递药方法,通过重新利用细菌 III 型分泌系统并结合一个杀伤开关,克服了 PNAs 进入哺乳动物细胞的有限转运问题,该杀伤开关在人类上皮细胞中有效消除了 99.6%的细胞内沙门氏菌感染。