Suppr超能文献

通过从不吸烟者的突变特征追踪肺癌风险因素。

Tracing Lung Cancer Risk Factors Through Mutational Signatures in Never-Smokers.

出版信息

Am J Epidemiol. 2021 Jun 1;190(6):962-976. doi: 10.1093/aje/kwaa234.

Abstract

Epidemiologic studies often rely on questionnaire data, exposure measurement tools, and/or biomarkers to identify risk factors and the underlying carcinogenic processes. An emerging and promising complementary approach to investigate cancer etiology is the study of somatic "mutational signatures" that endogenous and exogenous processes imprint on the cellular genome. These signatures can be identified from a complex web of somatic mutations thanks to advances in DNA sequencing technology and analytical algorithms. This approach is at the core of the Sherlock-Lung study (2018-ongoing), a retrospective case-only study of over 2,000 lung cancers in never-smokers (LCINS), using different patterns of mutations observed within LCINS tumors to trace back possible exposures or endogenous processes. Whole genome and transcriptome sequencing, genome-wide methylation, microbiome, and other analyses are integrated with data from histological and radiological imaging, lifestyle, demographic characteristics, environmental and occupational exposures, and medical records to classify LCINS into subtypes that could reveal distinct risk factors. To date, we have received samples and data from 1,370 LCINS cases from 17 study sites worldwide and whole-genome sequencing has been completed on 1,257 samples. Here, we present the Sherlock-Lung study design and analytical strategy, also illustrating some empirical challenges and the potential for this approach in future epidemiologic studies.

摘要

流行病学研究通常依赖问卷调查数据、暴露测量工具和/或生物标志物来识别危险因素和潜在的致癌过程。一种新兴且有前途的补充方法是研究体细胞“突变特征”,这些特征是内源性和外源性过程在细胞基因组上留下的印记。由于 DNA 测序技术和分析算法的进步,可以从复杂的体细胞突变网络中识别这些特征。这种方法是 Sherlock-Lung 研究(2018 年至今)的核心,这是一项针对 2000 多名从不吸烟的肺癌患者(LCINS)的回顾性病例对照研究,利用在 LCINS 肿瘤中观察到的不同突变模式来追溯可能的暴露或内源性过程。全基因组和转录组测序、全基因组甲基化、微生物组和其他分析与来自组织学和放射影像学、生活方式、人口统计学特征、环境和职业暴露以及病历的数据相结合,将 LCINS 分为可能揭示不同危险因素的亚型。迄今为止,我们已经从全球 17 个研究地点收到了 1370 例 LCINS 病例的样本和数据,并且已经完成了 1257 个样本的全基因组测序。在这里,我们介绍了 Sherlock-Lung 研究设计和分析策略,还说明了一些经验挑战和这种方法在未来流行病学研究中的潜力。

相似文献

2
Lung cancer in never smokers.不吸烟人群中的肺癌。
Future Oncol. 2011 Oct;7(10):1195-211. doi: 10.2217/fon.11.100.
3
Genomic and evolutionary classification of lung cancer in never smokers.非吸烟人群肺癌的基因组和进化分类。
Nat Genet. 2021 Sep;53(9):1348-1359. doi: 10.1038/s41588-021-00920-0. Epub 2021 Sep 6.
5
Lung cancer in never smokers: a review.从不吸烟者的肺癌:综述
J Clin Oncol. 2007 Feb 10;25(5):561-70. doi: 10.1200/JCO.2006.06.8015.
6
Lung cancer in never smokers--a review.不吸烟人群中的肺癌——综述。
Eur J Cancer. 2012 Jun;48(9):1299-311. doi: 10.1016/j.ejca.2012.03.007. Epub 2012 Mar 28.

引用本文的文献

1
mSigSDK - private computation of mutation signatures.mSigSDK - 突变特征的隐私计算
Res Sq. 2025 Sep 2:rs.3.rs-6536730. doi: 10.21203/rs.3.rs-6536730/v1.
8
Harnessing cancer genomes for precision oncology.利用癌症基因组学实现精准肿瘤学
Nat Genet. 2024 Sep;56(9):1768-1769. doi: 10.1038/s41588-024-01879-4.

本文引用的文献

1
Management of Ground-Glass Opacities in the Lung Cancer Spectrum.肺癌谱中磨玻璃密度影的管理。
Ann Thorac Surg. 2020 Dec;110(6):1796-1804. doi: 10.1016/j.athoracsur.2020.04.094. Epub 2020 Jun 7.
5
The repertoire of mutational signatures in human cancer.人类癌症中的突变特征谱。
Nature. 2020 Feb;578(7793):94-101. doi: 10.1038/s41586-020-1943-3. Epub 2020 Feb 5.
6
Tobacco smoking and somatic mutations in human bronchial epithelium.吸烟与人类支气管上皮体细胞突变。
Nature. 2020 Feb;578(7794):266-272. doi: 10.1038/s41586-020-1961-1. Epub 2020 Jan 29.
9
Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma.追踪肺腺癌突变历史中的癌基因重排。
Cell. 2019 Jun 13;177(7):1842-1857.e21. doi: 10.1016/j.cell.2019.05.013. Epub 2019 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验