Suppr超能文献

基于 CT 的原发性胃胃肠间质瘤术前恶性潜能预测列线图

A CT-based nomogram for predicting the malignant potential of primary gastric gastrointestinal stromal tumors preoperatively.

机构信息

Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China.

出版信息

Abdom Radiol (NY). 2021 Jul;46(7):3075-3085. doi: 10.1007/s00261-021-03026-7. Epub 2021 Mar 13.

Abstract

PURPOSE

To develop and validate a computerized tomography (CT)-based nomogram for predicting the malignant potential of primary gastric gastrointestinal stromal tumors (GISTs).

METHODS

The primary and validation cohorts consisted of 167 and 39 patients (single center, different time periods) with histologically confirmed primary gastric GISTs. Clinical data and preoperative CT images were reviewed. The association of CT characteristics with malignant potential was analyzed using univariate and stepwise logistic regression analyses. A nomogram based on significant CT findings was developed for predicting malignant potential. The predictive accuracy of the nomogram was determined by the concordance index (C-index) and calibration curves. External validation was performed with the validation cohort.

RESULTS

CT imaging features including tumor size, tumor location, tumor necrosis, growth pattern, ulceration, enlarged vessels feeding or draining the mass (EVFDM), tumor contour, mesenteric fat infiltration, and direct organ invasion showed significant differences between the low- and high-grade malignant potential groups in univariate analysis (P < 0.05). Only tumor size (> 5 cm vs ≤ 5 cm), location (cardiac/pericardial region vs other), EVFDM, and mesenteric fat infiltration (present vs absent) were significantly associated with high malignant potential in multivariate logistic regression analysis. Incorporating these four independent factors into the nomogram model achieved good C-indexes of 0.946 (95% confidence interval [CI] 0.899-0.975) and 0.952 (95% CI 0.913-0.977) in the primary and validation cohorts, respectively. The cutoff point was 0.33, with sensitivity, specificity, and diagnostic accuracy of 0.865, 0.915, and 0.780, respectively.

DISCUSSION

Primary gastric GISTs originating in the cardiac/pericardial region appear to be associated with higher malignant potential. The nomogram consisting of CT features, including size, location, EVFDM, and mesenteric fat infiltration, could be used to accurately predict the high malignant potential of primary gastric GISTs.

摘要

目的

开发并验证一种基于计算机断层扫描(CT)的列线图,用于预测原发性胃胃肠道间质瘤(GIST)的恶性潜能。

方法

主要队列和验证队列分别包含 167 例和 39 例(单中心,不同时期)经组织学证实的原发性胃 GIST 患者。回顾临床资料和术前 CT 图像。使用单因素和逐步逻辑回归分析评估 CT 特征与恶性潜能的关系。基于有意义的 CT 发现开发了一个预测恶性潜能的列线图。通过一致性指数(C 指数)和校准曲线确定列线图的预测准确性。使用验证队列进行外部验证。

结果

CT 成像特征包括肿瘤大小、肿瘤位置、肿瘤坏死、生长模式、溃疡、增大的血管供血或引流肿块(EVFDM)、肿瘤轮廓、肠系膜脂肪浸润和直接器官侵犯,在单因素分析中,低级别和高级别恶性潜能组之间存在显著差异(P<0.05)。仅肿瘤大小(>5cm 与≤5cm)、位置(心/心包区与其他部位)、EVFDM 和肠系膜脂肪浸润(存在与不存在)在多因素逻辑回归分析中与高恶性潜能显著相关。将这四个独立因素纳入列线图模型,在主要队列和验证队列中分别获得了 0.946(95%置信区间 [CI] 0.899-0.975)和 0.952(95% CI 0.913-0.977)的良好 C 指数。截断点为 0.33,敏感性、特异性和诊断准确性分别为 0.865、0.915 和 0.780。

讨论

起源于心包区的原发性胃 GIST 似乎与更高的恶性潜能相关。由 CT 特征(包括大小、位置、EVFDM 和肠系膜脂肪浸润)组成的列线图可用于准确预测原发性胃 GIST 的高恶性潜能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验