Suppr超能文献

走向医学机器学习中算法偏差的实用主义处理。

Towards a pragmatist dealing with algorithmic bias in medical machine learning.

机构信息

Institute for Biomedical Ethics, University of Basel, Basel, Switzerland.

Center for Legal Medicine, University of Geneva, Geneva, Switzerland.

出版信息

Med Health Care Philos. 2021 Sep;24(3):341-349. doi: 10.1007/s11019-021-10008-5. Epub 2021 Mar 13.

Abstract

Machine Learning (ML) is on the rise in medicine, promising improved diagnostic, therapeutic and prognostic clinical tools. While these technological innovations are bound to transform health care, they also bring new ethical concerns to the forefront. One particularly elusive challenge regards discriminatory algorithmic judgements based on biases inherent in the training data. A common line of reasoning distinguishes between justified differential treatments that mirror true disparities between socially salient groups, and unjustified biases which do not, leading to misdiagnosis and erroneous treatment. In the curation of training data this strategy runs into severe problems though, since distinguishing between the two can be next to impossible. We thus plead for a pragmatist dealing with algorithmic bias in healthcare environments. By recurring to a recent reformulation of William James's pragmatist understanding of truth, we recommend that, instead of aiming at a supposedly objective truth, outcome-based therapeutic usefulness should serve as the guiding principle for assessing ML applications in medicine.

摘要

机器学习(ML)在医学领域的应用日益广泛,有望为临床诊断、治疗和预后提供更好的工具。虽然这些技术创新必将改变医疗保健行业,但也带来了新的伦理问题。其中一个特别难以解决的挑战是基于训练数据中固有的偏差进行歧视性算法判断。一种常见的推理方法是区分基于社会重要群体之间真实差异的合理差异化治疗方法和没有差异的不合理偏见,从而导致误诊和错误治疗。然而,在训练数据的整理过程中,这种策略会遇到严重的问题,因为区分两者几乎是不可能的。因此,我们呼吁在医疗保健环境中处理算法偏差的实用主义者。通过最近对威廉·詹姆斯实用主义真理观的重新表述,我们建议,与其追求所谓的客观真理,基于结果的治疗有效性应该作为评估医学中 ML 应用的指导原则。

相似文献

1
Towards a pragmatist dealing with algorithmic bias in medical machine learning.走向医学机器学习中算法偏差的实用主义处理。
Med Health Care Philos. 2021 Sep;24(3):341-349. doi: 10.1007/s11019-021-10008-5. Epub 2021 Mar 13.
3
On Algorithmic Fairness in Medical Practice.医疗实践中的算法公平性问题
Camb Q Healthc Ethics. 2022 Jan;31(1):83-94. doi: 10.1017/S0963180121000839.
4
Algorithmic fairness in computational medicine.计算医学中的算法公平性。
EBioMedicine. 2022 Oct;84:104250. doi: 10.1016/j.ebiom.2022.104250. Epub 2022 Sep 6.

引用本文的文献

4
From theory to practice: Harmonizing taxonomies of trustworthy AI.从理论到实践:协调可信人工智能的分类法。
Health Policy Open. 2024 Sep 5;7:100128. doi: 10.1016/j.hpopen.2024.100128. eCollection 2024 Dec 15.
6
Based on Medicine, The Now and Future of Large Language Models.基于医学,大语言模型的现状与未来。
Cell Mol Bioeng. 2024 Sep 16;17(4):263-277. doi: 10.1007/s12195-024-00820-3. eCollection 2024 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验