Suppr超能文献

从理论到实践:协调可信人工智能的分类法。

From theory to practice: Harmonizing taxonomies of trustworthy AI.

作者信息

Makridis Christos A, Mueller Joshua, Tiffany Theo, Borkowski Andrew A, Zachary John, Alterovitz Gil

机构信息

Department of Veterans Affairs, 810 Vermont Ave NW, Washington DC, 20001, United States.

University of Nicosia, Institute for the Future, AGC Towers, 28th October 24, Nicosia 2414, Cyprus.

出版信息

Health Policy Open. 2024 Sep 5;7:100128. doi: 10.1016/j.hpopen.2024.100128. eCollection 2024 Dec 15.

Abstract

The increasing capabilities of AI pose new risks and vulnerabilities for organizations and decision makers. Several trustworthy AI frameworks have been created by U.S. federal agencies and international organizations to outline the principles to which AI systems must adhere for their use to be considered responsible. Different trustworthy AI frameworks reflect the priorities and perspectives of different stakeholders, and there is no consensus on a single framework yet. We evaluate the leading frameworks and provide a holistic perspective on trustworthy AI values, allowing federal agencies to create agency-specific trustworthy AI strategies that account for unique institutional needs and priorities. We apply this approach to the Department of Veterans Affairs, an entity with largest health care system in US. Further, we contextualize our framework from the perspective of the federal government on how to leverage existing trustworthy AI frameworks to develop a set of guiding principles that can provide the foundation for an agency to design, develop, acquire, and use AI systems in a manner that simultaneously fosters trust and confidence and meets the requirements of established laws and regulations.

摘要

人工智能能力的不断提升给组织和决策者带来了新的风险和漏洞。美国联邦机构和国际组织已经创建了几个值得信赖的人工智能框架,以概述人工智能系统在使用中要被视为负责必须遵守的原则。不同的值得信赖的人工智能框架反映了不同利益相关者的优先事项和观点,目前尚未就单一框架达成共识。我们评估了领先的框架,并提供了关于值得信赖的人工智能价值观的整体视角,使联邦机构能够制定针对特定机构的值得信赖的人工智能战略,以考虑到独特的机构需求和优先事项。我们将这种方法应用于美国退伍军人事务部,该部门拥有美国最大的医疗保健系统。此外,我们从联邦政府的角度将我们的框架置于背景之中,说明如何利用现有的值得信赖的人工智能框架来制定一套指导原则,为一个机构设计、开发、获取和使用人工智能系统提供基础,同时促进信任和信心,并符合既定法律法规的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eab/11532940/8b3b4fe78fe6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验