A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia; Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 bld 2, 119991 Moscow, Russia.
Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics," Russian Academy of Sciences, 119333 Moscow, Russia.
J Mol Biol. 2021 May 14;433(10):166930. doi: 10.1016/j.jmb.2021.166930. Epub 2021 Mar 11.
DNA co-crystallization with Dps family proteins is a fundamental mechanism, which preserves DNA in bacteria from harsh conditions. Though many aspects of this phenomenon are well characterized, the spatial organization of DNA in DNA-Dps co-crystals is not completely understood, and existing models need further clarification. To advance in this problem we have utilized atomic force microscopy (AFM) as the main structural tool, and small-angle X-scattering (SAXS) to characterize Dps as a key component of the DNA-protein complex. SAXS analysis in the presence of EDTA indicates a significantly larger radius of gyration for Dps than would be expected for the core of the dodecamer, consistent with the N-terminal regions extending out into solution and being accessible for interaction with DNA. In AFM experiments, both Dps protein molecules and DNA-Dps complexes adsorbed on mica or highly oriented pyrolytic graphite (HOPG) surfaces form densely packed hexagonal structures with a characteristic size of about 9 nm. To shed light on the peculiarities of DNA interaction with Dps molecules, we have characterized individual DNA-Dps complexes. Contour length evaluation has confirmed the non-specific character of Dps binding with DNA and revealed that DNA does not wrap Dps molecules in DNA-Dps complexes. Angle analysis has demonstrated that in DNA-Dps complexes a Dps molecule contacts with a DNA segment of ~6 nm in length. Consideration of DNA condensation upon complex formation with small Dps quasi-crystals indicates that DNA may be arranged along the rows of ordered protein molecules on a Dps sheet.
DNA 与 Dps 家族蛋白的共结晶是一种基本机制,它可以保护细菌中的 DNA 免受恶劣条件的影响。尽管这一现象的许多方面都得到了很好的描述,但 DNA 在 DNA-Dps 共晶中的空间组织还不完全清楚,现有的模型需要进一步澄清。为了在这个问题上取得进展,我们利用原子力显微镜(AFM)作为主要的结构工具,以及小角 X 散射(SAXS)来表征 Dps 作为 DNA-蛋白复合物的关键组成部分。在 EDTA 存在下的 SAXS 分析表明,Dps 的回转半径明显大于十二聚体核心的预期值,这与 N 端区域延伸到溶液中并可与 DNA 相互作用一致。在 AFM 实验中,Dps 蛋白分子和吸附在云母或高取向热解石墨(HOPG)表面上的 DNA-Dps 复合物都形成了具有约 9nm 特征尺寸的密集堆积的六方结构。为了阐明 DNA 与 Dps 分子相互作用的特殊性,我们对单个 DNA-Dps 复合物进行了表征。轮廓长度评估证实了 Dps 与 DNA 的非特异性结合,并揭示了 DNA 不会将 Dps 分子包裹在 DNA-Dps 复合物中。角度分析表明,在 DNA-Dps 复合物中,Dps 分子与约 6nm 长的 DNA 片段接触。考虑到 DNA 与小 Dps 拟晶形成复合物时的浓缩,表明 DNA 可能沿着 Dps 片上有序蛋白分子的行排列。