Tagawa Takanobu, Kopardé Vishal N, Ziegelbauer Joseph M
HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, United States.
CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States.
Methods. 2021 Dec;196:129-137. doi: 10.1016/j.ymeth.2021.03.004. Epub 2021 Mar 11.
Circular forms of RNA were first discovered in plant viroids and later found in a variety of animal viruses. These circular RNAs lack free 5' and 3' ends, granting protection from exonucleases. This review is focused on the methods that are used to investigate virus-encoded circular RNAs. Using DNA viruses that are prevalent among human as examples, we begin with features of circular RNAs and the unique methods to enrich for circular RNAs. Next, we discuss the computational methods for RNA-sequencing analysis to discover new virus-encoded circular RNAs. Many strategies are similar to analyzing cellular RNAs, but some unique aspects of virus-encoded circular RNAs that are likely due to highly packed viral genomes and non-canonical use of splicing machinery, are described herein. We illustrate the various methods of validating expression of specific virus-encoded circular RNAs. Finally, we discuss novel methods to study functions of circular RNAs and the current technical challenges that remain for investigating virus-encoded circular RNAs.
环状RNA最早在植物类病毒中被发现,随后在多种动物病毒中也有发现。这些环状RNA缺乏游离的5'和3'末端,从而免受核酸外切酶的攻击。本综述聚焦于用于研究病毒编码环状RNA的方法。以在人类中普遍存在的DNA病毒为例,我们首先介绍环状RNA的特征以及富集环状RNA的独特方法。接下来,我们讨论用于RNA测序分析以发现新的病毒编码环状RNA的计算方法。许多策略与分析细胞RNA相似,但本文描述了病毒编码环状RNA的一些独特方面,这可能归因于高度紧凑的病毒基因组和剪接机制的非规范使用。我们阐述了验证特定病毒编码环状RNA表达的各种方法。最后,我们讨论研究环状RNA功能的新方法以及在研究病毒编码环状RNA方面仍然存在的当前技术挑战。