Suppr超能文献

基于自适应多尺度改进差分滤波器的瞬态脉冲增强及其在旋转机械故障诊断中的应用

Transient impulses enhancement based on adaptive multi-scale improved differential filter and its application in rotating machines fault diagnosis.

作者信息

Guo Junchao, Shi Zhanqun, Li Haiyang, Zhen Dong, Gu Fengshou, Ball Andrew D

机构信息

Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China.

Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK.

出版信息

ISA Trans. 2022 Jan;120:271-292. doi: 10.1016/j.isatra.2021.03.005. Epub 2021 Mar 6.

Abstract

Transient impulses caused by local defects are critical for the fault detection of rotating machines. However, they are extremely weak and overwhelmed in the strong noise and harmonic components, making the transient features are very difficult to be extracted. This paper proposes an adaptive multi-scale improved differential filter (AMIDIF) to enhance the identification of transient impulses for rotating machine fault diagnosis. In this scheme, firstly, the AMIDIF is performed to decompose the measured signal of rotating machine into a series of multi-scale improved differential filter (MIDIF) filtered signals. Subsequently, in view of the MIDIF filtered signals exhibit varying extents of validity in revealing fault features, a weighted reconstruction method using correlation analysis is proposed in which the weighted coefficients are counted and distributed to the corresponding MIDIF filtered signals to highlight the effective MIDIF filtered signals and weaken the invalid ones. Finally, the transient impulse components of rotating machinery are obtained by multiplying the weighted coefficients and the MIDIF filtered signals under different scales. Furthermore, the fault types of rotating machines are inferred from the fault defect frequencies in the envelope spectrum of the transient impulses. Simulation analysis and experimental studies are implemented to verify the performance of the AMIDIF compared with the state-of-the-art methods including spectral kurtosis (SK), multi-scale average combination different morphological filter (ACDIF) and multi-scale morphology gradient product operation (MGPO). The results prove that the AMIDIF has excellent performance in extracting transient features for rotating machines fault diagnosis.

摘要

由局部缺陷引起的瞬态脉冲对于旋转机械的故障检测至关重要。然而,它们极其微弱,在强噪声和谐波分量中被淹没,使得瞬态特征非常难以提取。本文提出一种自适应多尺度改进差分滤波器(AMIDIF),以增强旋转机械故障诊断中瞬态脉冲的识别能力。在该方案中,首先,执行AMIDIF将旋转机械的测量信号分解为一系列多尺度改进差分滤波器(MIDIF)滤波后的信号。随后,鉴于MIDIF滤波后的信号在揭示故障特征方面表现出不同程度的有效性,提出一种基于相关分析的加权重构方法,其中计算加权系数并将其分配给相应的MIDIF滤波后的信号,以突出有效的MIDIF滤波后的信号并削弱无效的信号。最后,通过将加权系数与不同尺度下的MIDIF滤波后的信号相乘,获得旋转机械的瞬态脉冲分量。此外,从瞬态脉冲的包络谱中的故障缺陷频率推断旋转机械的故障类型。进行了仿真分析和实验研究,以验证AMIDIF与包括谱峭度(SK)、多尺度平均组合不同形态滤波器(ACDIF)和多尺度形态梯度乘积运算(MGPO)在内的现有方法相比的性能。结果证明,AMIDIF在提取旋转机械故障诊断的瞬态特征方面具有优异的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验