Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.
Pharmacoepidemiol Drug Saf. 2021 Jul;30(7):868-874. doi: 10.1002/pds.5229. Epub 2021 Mar 23.
Accurately identifying patients with psoriasis (PsO) is crucial for generating real-world evidence on PsO disease course and treatment utilization.
We developed nine claims-based algorithms for PsO using a combination of the International Classification of Diseases (ICD)-9 codes, specialist visit, and medication dispensing using Medicare linked to electronic health records data (2013-2014) in two healthcare provider networks in Boston, Massachusetts. We calculated positive predictive value (PPV) and 95% confidence interval (CI) for each algorithm using the treating physician's diagnosis of PsO via chart review as the gold standard. Among the confirmed PsO cases, we assessed their PsO disease activity.
The nine claims-based algorithms identified 990 unique patient records. Of those, 918 (92.7%) with adequate information were reviewed. The PPV of the algorithms ranged from 65.1 to 82.9%. An algorithm defined as ≥1 ICD-9 diagnosis code for PsO and ≥1 prescription claim for topical vitamin D agents showed the highest PPV (82.9%). The PPV of the algorithm requiring ≥2 ICD-9 diagnosis codes and ≥1 prescription claim for PsO treatment excluding topical steroids was 81.1% but higher (82.5%) when ≥1 diagnosis was from a dermatologist. Among 411 PsO patients with adequate information on PsO disease activity in EHRs, 1.5-5.8% had no disease activity, 31.3-36.8% mild, and 26.9-35.1% moderate-to-severe across the algorithms.
Claims-based algorithms based on a combination of PsO diagnosis codes and dispensing for PsO-specific treatments had a moderate-to-high PPV. These algorithms can serve as a useful tool to identify patients with PsO in future real-world data pharmacoepidemiologic studies.
准确识别银屑病(PsO)患者对于生成关于 PsO 疾病进程和治疗利用的真实世界证据至关重要。
我们使用马萨诸塞州波士顿的两个医疗保健提供商网络中的医疗保险与电子健康记录数据(2013-2014 年),结合国际疾病分类(ICD)-9 代码、专家就诊和药物配药,开发了九种基于索赔的 PsO 算法。我们通过图表审查计算了每个算法的阳性预测值(PPV)和 95%置信区间(CI),作为金标准的是治疗医生对 PsO 的诊断。在确诊的 PsO 病例中,我们评估了他们的 PsO 疾病活动度。
九个基于索赔的算法共确定了 990 个唯一的患者记录。其中,有 918 个(92.7%)有足够信息的记录被审查。算法的 PPV 范围为 65.1%至 82.9%。一种定义为≥1 个 PsO 的 ICD-9 诊断代码和≥1 种局部维生素 D 制剂的处方要求的算法显示出最高的 PPV(82.9%)。需要≥2 个 PsO 治疗的 ICD-9 诊断代码和≥1 种非局部类固醇处方要求的算法的 PPV 为 81.1%,但当≥1 个诊断来自皮肤科医生时,PPV 更高(82.5%)。在 EHR 中记录了足够的 411 名 PsO 患者的 PsO 疾病活动度信息的患者中,在不同算法中,无疾病活动度的患者为 1.5-5.8%,轻度患者为 31.3-36.8%,中度至重度患者为 26.9-35.1%。
基于 PsO 诊断代码和 PsO 特定治疗药物配药的组合的基于索赔的算法具有中高度的 PPV。这些算法可以作为未来真实世界数据药物流行病学研究中识别 PsO 患者的有用工具。