Suppr超能文献

从医疗保健数据库中识别皮肤狼疮患者的算法的开发与验证

Development and Validation of Algorithms to Identify Individuals With Cutaneous Lupus From Healthcare Databases.

作者信息

Guo Lisa N, Said Jordan T, Woodbury Michael J, Nambudiri Vinod E, Merola Joseph F

机构信息

Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

J Cutan Med Surg. 2025 Mar-Apr;29(2):131-136. doi: 10.1177/12034754241301405. Epub 2024 Nov 30.

Abstract

BACKGROUND

There are no validated methods to identify individuals with cutaneous lupus erythematosus (CLE) from large databases including claims data and electronic health records, severely limiting the study of the epidemiology of this disease.

OBJECTIVES

To develop and validate accurate algorithms to identify individuals with CLE from healthcare records.

METHODS

Twelve case-finding algorithms were developed based on the International Classification of Diseases (ICD)-10 diagnosis codes, provider specialty, and medication prescription data. To validate performance, algorithms were applied to a test cohort of 300 individuals drawn from a clinical data repository of a multi-institutional healthcare network in Boston, MA. Documentation of a CLE diagnosis by a dermatologist or rheumatologist determined from chart review or supportive biopsy findings was used as the case definition standard. Performance was evaluated based on calculated positive predictive values (PPVs), specificities, and sensitivities of each algorithm.

RESULTS

PPVs ranged from 58.0% to 92.9%. The use of a single diagnosis code for CLE from any provider had poor PPV. The algorithm with the highest PPV (89.0%) while maintaining sensitivity required at least 1 ICD-10 CLE diagnosis code recorded by a dermatologist.

CONCLUSIONS

Utilizing CLE diagnosis codes and dermatology as the coding provider specialty is a valid method for identifying CLE patients from electronic health records.

摘要

背景

在包括理赔数据和电子健康记录在内的大型数据库中,尚无经过验证的方法来识别皮肤红斑狼疮(CLE)患者,这严重限制了对该疾病流行病学的研究。

目的

开发并验证从医疗记录中识别CLE患者的准确算法。

方法

基于国际疾病分类(ICD)-10诊断代码、医疗服务提供者专业和药物处方数据,开发了12种病例查找算法。为验证性能,将算法应用于从马萨诸塞州波士顿一个多机构医疗网络的临床数据存储库中抽取的300名个体的测试队列。通过图表审查或支持性活检结果确定的皮肤科医生或风湿病学家对CLE诊断的记录用作病例定义标准。根据计算出的每种算法的阳性预测值(PPV)、特异性和敏感性来评估性能。

结果

PPV范围为58.0%至92.9%。使用任何医疗服务提供者的单一CLE诊断代码时,PPV较低。PPV最高(89.0%)且保持敏感性的算法要求皮肤科医生至少记录1个ICD-10 CLE诊断代码。

结论

利用CLE诊断代码并将皮肤科作为编码医疗服务提供者专业是从电子健康记录中识别CLE患者的有效方法。

相似文献

9
Validation of claims-based algorithms to identify patients with psoriasis.基于申报的算法验证用于识别银屑病患者。
Pharmacoepidemiol Drug Saf. 2021 Jul;30(7):868-874. doi: 10.1002/pds.5229. Epub 2021 Mar 23.

本文引用的文献

2
Using Big Data to Understand Rare Diseases.利用大数据了解罕见病。
Int J Heart Fail. 2021 Jul 16;3(3):194-196. doi: 10.36628/ijhf.2021.0026. eCollection 2021 Jul.
4
Validation of claims-based algorithms to identify patients with psoriasis.基于申报的算法验证用于识别银屑病患者。
Pharmacoepidemiol Drug Saf. 2021 Jul;30(7):868-874. doi: 10.1002/pds.5229. Epub 2021 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验