Suppr超能文献

利用静息态功能网络连接数据的机器学习分类检测产前酒精暴露。

Detection of prenatal alcohol exposure using machine learning classification of resting-state functional network connectivity data.

机构信息

The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM 87106, United States.

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Place NE, Atlanta, GA 30303, United States.

出版信息

Alcohol. 2021 Jun;93:25-34. doi: 10.1016/j.alcohol.2021.03.001. Epub 2021 Mar 11.

Abstract

Fetal Alcohol Spectrum Disorder (FASD), a wide range of physical and neurobehavioral abnormalities associated with prenatal alcohol exposure (PAE), is recognized as a significant public health concern. Advancements in the diagnosis of FASD have been hindered by a lack of consensus in diagnostic criteria and limited use of objective biomarkers. Previous research from our group utilized resting-state functional magnetic resonance imaging (fMRI) to measure functional network connectivity (FNC), which revealed several sex- and region-dependent alterations in FNC as a result of moderate PAE relative to controls. Considering that FNC is sensitive to moderate PAE, this study explored the use of FNC data and machine learning methods to detect PAE among a sample of rodents exposed to alcohol prenatally and controls. We utilized previously acquired resting state fMRI data collected from adult rats exposed to moderate levels of prenatal alcohol (PAE) or a saccharin control solution (SAC) to assess FNC of resting state networks extracted by spatial group independent component analysis (GICA). FNC data were subjected to binary classification using support vector machine (SVM) -based algorithms and leave-one-out-cross validation (LOOCV) in an aggregated sample of males and females (n = 48; 12 male PAE, 12 female PAE, 12 male SAC, 12 female SAC), a males-only sample (n = 24; 12 PAE, 12 SAC), and a females-only sample (n = 24; 12 PAE, 12 SAC). Results revealed that a quadratic SVM (QSVM) kernel was significantly effective for PAE detection in females. QSVM kernel-based classification resulted in accuracy rates of 62.5% for all animals, 58.3% for males, and 79.2% for females. Additionally, qualitative evaluation of QSVM weights implicates an overarching theme of several hippocampal and cortical networks in contributing to the formation of correct classification decisions by QSVM. Our results suggest that binary classification using QSVM and adult female FNC data is a potential candidate for the translational development of novel and non-invasive techniques for the identification of FASD.

摘要

胎儿酒精谱系障碍(FASD)是一种与产前酒精暴露(PAE)相关的广泛的身体和神经行为异常,被认为是一个重大的公共卫生问题。由于缺乏诊断标准的共识和客观生物标志物的有限应用,FASD 的诊断进展一直受到阻碍。我们小组之前的研究利用静息态功能磁共振成像(fMRI)来测量功能网络连接(FNC),结果显示,与对照组相比,中度 PAE 导致 FNC 出现了一些性别和区域依赖的改变。鉴于 FNC 对中度 PAE 敏感,本研究探讨了使用 FNC 数据和机器学习方法来检测产前酒精暴露的方法,研究对象为一组接受产前酒精暴露和对照组的啮齿动物。我们利用先前从暴露于中度产前酒精(PAE)或蔗糖对照溶液(SAC)的成年大鼠中获得的静息态 fMRI 数据,评估通过空间群组独立成分分析(GICA)提取的静息态网络的 FNC。使用支持向量机(SVM)-基于算法对 FNC 数据进行二进制分类,并在雄性和雌性的汇总样本(n=48;12 只雄性 PAE,12 只雌性 PAE,12 只雄性 SAC,12 只雌性 SAC)、雄性样本(n=24;12 只 PAE,12 只 SAC)和雌性样本(n=24;12 只 PAE,12 只 SAC)中进行留一法交叉验证(LOOCV)。结果表明,二次 SVM(QSVM)核对女性 PAE 检测非常有效。基于 QSVM 核的分类结果显示,所有动物的准确率为 62.5%,雄性为 58.3%,雌性为 79.2%。此外,QSVM 权重的定性评估表明,几个海马和皮质网络的总体主题有助于 QSVM 做出正确的分类决策。我们的研究结果表明,使用 QSVM 和成年雌性 FNC 数据进行二进制分类是开发用于识别 FASD 的新型非侵入性技术的潜在候选方法。

相似文献

2
Moderate Prenatal Alcohol Exposure Alters Functional Connectivity in the Adult Rat Brain.
Alcohol Clin Exp Res. 2016 Oct;40(10):2134-2146. doi: 10.1111/acer.13175. Epub 2016 Aug 29.
3
Disruptions in global network segregation and integration in adolescents and young adults with fetal alcohol spectrum disorder.
Alcohol Clin Exp Res. 2021 Sep;45(9):1775-1789. doi: 10.1111/acer.14673. Epub 2021 Aug 2.
4
Disrupted dynamic functional network connectivity in fetal alcohol spectrum disorders.
Alcohol Clin Exp Res (Hoboken). 2023 Apr;47(4):687-703. doi: 10.1111/acer.15046. Epub 2023 Mar 15.
5
Sex-specific Differences in Resting Oscillatory Dynamics in Children with Prenatal Alcohol Exposure.
Neuroscience. 2024 Apr 5;543:121-136. doi: 10.1016/j.neuroscience.2024.02.016. Epub 2024 Feb 20.
6
Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice.
Neurobiol Learn Mem. 2018 Dec;156:1-16. doi: 10.1016/j.nlm.2018.10.002. Epub 2018 Oct 12.
7
Sexually dimorphic effects of prenatal alcohol exposure on the murine skeleton.
Biol Sex Differ. 2024 Jun 18;15(1):51. doi: 10.1186/s13293-024-00626-y.
10
Functional connectivity abnormalities and associated cognitive deficits in fetal alcohol Spectrum disorders (FASD).
Brain Imaging Behav. 2017 Oct;11(5):1432-1445. doi: 10.1007/s11682-016-9624-4.

引用本文的文献

2
Deep learning for detecting prenatal alcohol exposure in pediatric brain MRI: a transfer learning approach with explainability insights.
Front Comput Neurosci. 2024 Aug 26;18:1434421. doi: 10.3389/fncom.2024.1434421. eCollection 2024.
3
Machine learning algorithms to the early diagnosis of fetal alcohol spectrum disorders.
Front Neurosci. 2024 May 6;18:1400933. doi: 10.3389/fnins.2024.1400933. eCollection 2024.
4
BOLD Activation During the Application of MOXO-CPT in School Patients With and Without Attention Deficit Hyperactivity Disorder.
J Atten Disord. 2024 Feb;28(3):321-334. doi: 10.1177/10870547231217093. Epub 2023 Dec 28.
5
Resting-state EEG Microstate Features Can Quantitatively Predict Autistic Traits in Typically Developing Individuals.
Brain Topogr. 2024 May;37(3):410-419. doi: 10.1007/s10548-023-01010-6. Epub 2023 Oct 13.
7
From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks.
Comput Methods Programs Biomed. 2023 Jun;236:107550. doi: 10.1016/j.cmpb.2023.107550. Epub 2023 Apr 16.

本文引用的文献

1
Introduction to Machine Learning, Neural Networks, and Deep Learning.
Transl Vis Sci Technol. 2020 Feb 27;9(2):14. doi: 10.1167/tvst.9.2.14.
2
Multivariate models of brain volume for identification of children and adolescents with fetal alcohol spectrum disorder.
Hum Brain Mapp. 2020 Apr 1;41(5):1181-1194. doi: 10.1002/hbm.24867. Epub 2019 Nov 18.
3
Fetal Alcohol Spectrum Disorders: A Review of the Neurobehavioral Deficits Associated With Prenatal Alcohol Exposure.
Alcohol Clin Exp Res. 2019 Jun;43(6):1046-1062. doi: 10.1111/acer.14040. Epub 2019 May 2.
4
6
Statistics versus machine learning.
Nat Methods. 2018 Apr;15(4):233-234. doi: 10.1038/nmeth.4642. Epub 2018 Apr 3.
7
Dynamic functional network connectivity discriminates mild traumatic brain injury through machine learning.
Neuroimage Clin. 2018 Mar 15;19:30-37. doi: 10.1016/j.nicl.2018.03.017. eCollection 2018.
9
Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities.
JAMA. 2018 Feb 6;319(5):474-482. doi: 10.1001/jama.2017.21896.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验