Ellis Charles A, Miller Robyn L, Calhoun Vince D
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.
Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.
Neuroimage Rep. 2023 Sep 29;3(4):100186. doi: 10.1016/j.ynirp.2023.100186. eCollection 2023 Dec.
Many studies have analyzed resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data to elucidate the effects of neurological and neuropsychiatric disorders upon the interactions of brain regions over time. Existing studies often use either machine learning classification or clustering algorithms. Additionally, several studies have used clustering algorithms to extract features related to brain states trajectories that can be used to train interpretable classifiers. However, the combination of explainable dFNC classifiers followed by clustering algorithms is highly underutilized. In this study, we show how such an approach can be used to study the effects of schizophrenia (SZ) upon brain activity. Specifically, we train an explainable deep learning model to classify between individuals with SZ and healthy controls. We then cluster the resulting explanations, identifying discriminatory states of dFNC. We lastly apply several novel measures to quantify aspects of the classifier explanations and obtain additional insights into the effects of SZ upon brain network dynamics. Specifically, we uncover effects of schizophrenia upon subcortical, sensory, and cerebellar network interactions. We also find that individuals with SZ likely have reduced variability in overall brain activity and that the effects of SZ may be temporally localized. In addition to uncovering effects of SZ upon brain network dynamics, our approach could provide novel insights into a variety of neurological and neuropsychiatric disorders in future dFNC studies.
许多研究分析了静息态功能磁共振成像(rs-fMRI)的动态功能网络连接性(dFNC)数据,以阐明神经和神经精神疾病对大脑区域随时间相互作用的影响。现有研究通常使用机器学习分类或聚类算法。此外,一些研究使用聚类算法来提取与脑状态轨迹相关的特征,这些特征可用于训练可解释的分类器。然而,可解释的dFNC分类器与聚类算法相结合的方法却未得到充分利用。在本研究中,我们展示了如何使用这种方法来研究精神分裂症(SZ)对大脑活动的影响。具体而言,我们训练了一个可解释的深度学习模型,以区分SZ患者和健康对照。然后,我们对得到的解释进行聚类,识别dFNC的区分状态。最后,我们应用几种新方法来量化分类器解释的各个方面,并获得关于SZ对脑网络动力学影响的更多见解。具体来说,我们揭示了精神分裂症对皮质下、感觉和小脑网络相互作用的影响。我们还发现,SZ患者的全脑活动变异性可能降低,且SZ的影响可能在时间上是局部的。除了揭示SZ对脑网络动力学的影响外,我们的方法还可以为未来dFNC研究中的各种神经和神经精神疾病提供新的见解。