Suppr超能文献

一种用于球形软机器人手臂的基于视觉的传感方法。

A Vision-Based Sensing Approach for a Spherical Soft Robotic Arm.

作者信息

Hofer Matthias, Sferrazza Carmelo, D'Andrea Raffaello

机构信息

Institute for Dynamic Systems and Control, ETH Zurich, Zurich, Switzerland.

出版信息

Front Robot AI. 2021 Feb 26;8:630935. doi: 10.3389/frobt.2021.630935. eCollection 2021.

Abstract

Sensory feedback is essential for the control of soft robotic systems and to enable deployment in a variety of different tasks. Proprioception refers to sensing the robot's own state and is of crucial importance in order to deploy soft robotic systems outside of laboratory environments, i.e. where no external sensing, such as motion capture systems, is available. A vision-based sensing approach for a soft robotic arm made from fabric is presented, leveraging the high-resolution sensory feedback provided by cameras. No mechanical interaction between the sensor and the soft structure is required and consequently the compliance of the soft system is preserved. The integration of a camera into an inflatable, fabric-based bellow actuator is discussed. Three actuators, each featuring an integrated camera, are used to control the spherical robotic arm and simultaneously provide sensory feedback of the two rotational degrees of freedom. A convolutional neural network architecture predicts the two angles describing the robot's orientation from the camera images. Ground truth data is provided by a motion capture system during the training phase of the supervised learning approach and its evaluation thereafter. The camera-based sensing approach is able to provide estimates of the orientation in real-time with an accuracy of about one degree. The reliability of the sensing approach is demonstrated by using the sensory feedback to control the orientation of the robotic arm in closed-loop.

摘要

感官反馈对于软机器人系统的控制以及在各种不同任务中的部署至关重要。本体感觉是指感知机器人自身的状态,对于在实验室环境之外部署软机器人系统(即没有外部传感,如运动捕捉系统的情况下)而言至关重要。本文提出了一种基于视觉的传感方法,用于由织物制成的软机器人手臂,利用相机提供的高分辨率感官反馈。传感器与软结构之间无需机械相互作用,因此保留了软系统的柔顺性。讨论了将相机集成到可充气的、基于织物的波纹管致动器中。三个致动器,每个都集成了一个相机,用于控制球形机器人手臂并同时提供两个旋转自由度的感官反馈。卷积神经网络架构从相机图像中预测描述机器人方向的两个角度。在监督学习方法的训练阶段及其后的评估过程中,由运动捕捉系统提供真实数据。基于相机的传感方法能够实时提供方向估计,精度约为一度。通过使用感官反馈在闭环中控制机器人手臂的方向,证明了传感方法的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8666/7953419/aade881d1003/frobt-08-630935-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验