Suppr超能文献

MC-Net:用于多对比度脑 MRI 的运动校正网络。

MC -Net: motion correction network for multi-contrast brain MRI.

机构信息

Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.

出版信息

Magn Reson Med. 2021 Aug;86(2):1077-1092. doi: 10.1002/mrm.28719. Epub 2021 Mar 15.

Abstract

PURPOSE

A motion-correction network for multi-contrast brain MRI is proposed to correct in-plane rigid motion artifacts in brain MR images using deep learning.

METHOD

The proposed method consists of 2 parts: image alignment and motion correction. Alignment of multi-contrast MR images is performed in an unsupervised manner by a CNN work, yielding transformation parameters to align input images in order to minimize the normalized cross-correlation loss among multi-contrast images. Then, fine-tuning for image alignment is performed by maximizing the normalized mutual information. The motion correction network corrects motion artifacts in the aligned multi-contrast images. The correction network is trained to minimize the structural similarity loss and the VGG loss in a supervised manner. All datasets of motion-corrupted images are generated using motion simulation based on MR physics.

RESULTS

A motion-correction network for multi-contrast brain MRI successfully corrected artifacts of simulated motion for 4 test subjects, showing 0.96%, 7.63%, and 5.03% increases in the average structural simularity and 5.19%, 10.2%, and 7.48% increases in the average normalized mutual information for T -weighted, T -weighted, and T -weighted fluid-attenuated inversion recovery images, respectively. The experimental setting with image alignment and artifact-free input images for other contrasts shows better performances in correction of simulated motion artifacts. Furthermore, the proposed method quantitatively outperforms recent deep learning motion correction and synthesis methods. Real motion experiments from 5 healthy subjects demonstrate the potential of the proposed method for use in a clinical environment.

CONCLUSION

A deep learning-based motion correction method for multi-contrast MRI was successfully developed, and experimental results demonstrate the validity of the proposed method.

摘要

目的

提出了一种用于多对比度脑 MRI 的运动校正网络,以使用深度学习校正脑 MRI 中的平面刚性运动伪影。

方法

该方法由 2 部分组成:图像对齐和运动校正。通过 CNN 工作以非监督的方式执行多对比度 MR 图像的对齐,生成变换参数以对齐输入图像,以最小化多对比度图像之间的归一化互相关损失。然后,通过最大化归一化互信息来执行图像对齐的微调。运动校正网络校正对齐的多对比度图像中的运动伪影。校正网络通过在监督方式下最小化结构相似性损失和 VGG 损失进行训练。使用基于磁共振物理学的运动模拟生成所有运动伪影的图像数据集。

结果

对于 4 个测试对象,用于多对比度脑 MRI 的运动校正网络成功校正了模拟运动的伪影,T 加权、T 加权和 T 加权液体衰减反转恢复图像的平均结构相似性分别增加了 0.96%、7.63%和 5.03%,平均归一化互信息分别增加了 5.19%、10.2%和 7.48%。对于其他对比度的具有图像对齐和无伪影输入图像的实验设置,在校正模拟运动伪影方面表现出更好的性能。此外,所提出的方法在定量上优于最近的深度学习运动校正和合成方法。来自 5 名健康受试者的真实运动实验证明了该方法在临床环境中应用的潜力。

结论

成功开发了一种用于多对比度 MRI 的基于深度学习的运动校正方法,实验结果证明了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验