School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
Magn Reson Med. 2024 Jul;92(1):28-42. doi: 10.1002/mrm.30026. Epub 2024 Jan 28.
In MRI, motion artifacts can significantly degrade image quality. Motion artifact correction methods using deep neural networks usually required extensive training on large datasets, making them time-consuming and resource-intensive. In this paper, an unsupervised deep learning-based motion artifact correction method for turbo-spin echo MRI is proposed using the deep image prior framework.
The proposed approach takes advantage of the high impedance to motion artifacts offered by the neural network parameterization to remove motion artifacts in MR images. The framework consists of parameterization of MR image, automatic spatial transformation, and motion simulation model. The proposed method synthesizes motion-corrupted images from the motion-corrected images generated by the convolutional neural network, where an optimization process minimizes the objective function between the synthesized images and the acquired images.
In the simulation study of 280 slices from 14 subjects, the proposed method showed a significant increase in the averaged structural similarity index measure by 0.2737 in individual coil images and by 0.4550 in the root-sum-of-square images. In addition, the ablation study demonstrated the effectiveness of each proposed component in correcting motion artifacts compared to the corrected images produced by the baseline method. The experiments on real motion dataset has shown its clinical potential.
The proposed method exhibited significant quantitative and qualitative improvements in correcting rigid and in-plane motion artifacts in MR images acquired using turbo spin-echo sequence.
在 MRI 中,运动伪影会显著降低图像质量。使用深度神经网络的运动伪影校正方法通常需要在大型数据集上进行广泛的训练,这使得它们既耗时又资源密集。本文提出了一种基于深度图像先验框架的用于涡轮自旋回波 MRI 的无监督深度学习运动伪影校正方法。
所提出的方法利用神经网络参数化提供的对运动伪影的高阻抗来去除磁共振图像中的运动伪影。该框架包括磁共振图像的参数化、自动空间变换和运动模拟模型。该方法从卷积神经网络生成的运动校正图像中合成运动伪影图像,其中优化过程最小化目标函数在合成图像和采集图像之间的差异。
在 14 名受试者的 280 个切片的模拟研究中,与基线方法产生的校正图像相比,该方法在个体线圈图像中的平均结构相似性指数测量值提高了 0.2737,在根和平方图像中的提高了 0.4550。此外,消融研究表明,与基线方法相比,每个所提出的组件在校正运动伪影方面的有效性。对真实运动数据集的实验表明了其临床潜力。
所提出的方法在纠正涡轮自旋回波序列采集的磁共振图像中的刚性和平面内运动伪影方面表现出了显著的定量和定性改善。