Legs and Walking Lab, Shirley Ryan Ability Lab, Floor 24, 355 E Erie St, Chicago 60611 IL, United States of America.
Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.
J Neural Eng. 2021 Apr 6;18(5). doi: 10.1088/1741-2552/abeead.
. This paper aims to investigate the feasibility and the validity of applying deep convolutional neural networks (CNN) to identify motor unit (MU) spike trains and estimate the neural drive to muscles from high-density electromyography (HD-EMG) signals in real time. Two distinct deep CNNs are compared with the convolution kernel compensation (CKC) algorithm using simulated and experimentally recorded signals. The effects of window size and step size of the input HD-EMG signals are also investigated.. The MU spike trains were first identified with the CKC algorithm. The HD-EMG signals and spike trains were used to train the deep CNN. Then, the deep CNN decomposed the HD-EMG signals into MU discharge times in real time. Two CNN approaches are compared with the CKC: (a) multiple single-output deep CNN (SO-DCNN) with one MU decomposed per network, and (b) one multiple-output deep CNN (MO-DCNN) to decompose all MUs (up to 23) with one network.. The MO-DCNN outperformed the SO-DCNN in terms of training time (3.2-21.4 s epochvs 6.5-47.8 s epoch, respectively) and prediction time (0.04 vs 0.27 s sample, respectively). The optimal window size and step size for MO-DCNN were 120 and 20 data points, respectively. It results in sensitivity of 98% and 85% with simulated and experimentally recorded HD-EMG signals, respectively. There is a high cross-correlation coefficient between the neural drive estimated with CKC and that estimated with MO-DCNN (range of-value across conditions: 0.88-0.95).. We demonstrate the feasibility and the validity of using deep CNN to accurately identify MU activity from HD-EMG with a latency lower than 80 ms, which falls within the lower bound of the human electromechanical delay. This method opens many opportunities for using the neural drive to interface humans with assistive devices.
. 本文旨在研究应用深度卷积神经网络(CNN)实时从高密度肌电图(HD-EMG)信号中识别运动单位(MU) Spike trains 并估计肌肉神经驱动的可行性和有效性。使用模拟和实验记录的信号比较了两种不同的深度 CNN 与卷积核补偿(CKC)算法。还研究了输入 HD-EMG 信号的窗口大小和步长的影响。首先使用 CKC 算法识别 MU Spike trains。然后,使用 HD-EMG 信号和 Spike trains 训练深度 CNN。接着,深度 CNN 实时将 HD-EMG 信号分解为 MU 放电时间。将两种 CNN 方法与 CKC 进行比较:(a)每个网络分解一个 MU 的多个单输出深度 CNN(SO-DCNN),以及(b)一个网络分解所有 MU(最多 23 个)的多个输出深度 CNN(MO-DCNN)。在训练时间(分别为 3.2-21.4 s 个 epoch 和 6.5-47.8 s 个 epoch)和预测时间(分别为 0.04 和 0.27 s 个样本)方面,MO-DCNN 优于 SO-DCNN。对于 MO-DCNN,最佳窗口大小和步长分别为 120 和 20 个数据点。使用模拟和实验记录的 HD-EMG 信号,分别得到 98%和 85%的灵敏度。用 CKC 和 MO-DCNN 估计的神经驱动之间具有较高的互相关系数(条件范围内的值范围:0.88-0.95)。我们证明了使用深度 CNN 从 HD-EMG 中准确识别 MU 活动的可行性和有效性,潜伏期低于 80 ms,低于人类机电延迟的下限。该方法为使用神经驱动将人与辅助设备接口提供了许多机会。