Suppr超能文献

通过并行卷积神经网络进行实时手指力量预测:一项初步研究。

Real-time finger force prediction via parallel convolutional neural networks: a preliminary study.

作者信息

Xu Feng, Zheng Yang, Hu Xiaogang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3126-3129. doi: 10.1109/EMBC44109.2020.9175390.

Abstract

Continuous and accurate decoding of intended motions is critical for human-machine interactions. Here, we developed a novel approach for real-time continuous prediction of forces in individual fingers using parallel convolutional neural networks (CNNs). We extracted populational motor unit discharge frequency using CNNs in a parallel structure without spike sorting. The CNN parameters were trained based on two features from high-density electromyogram (HD-EMG), namely temporal energy heatmaps and frequency spectrum maps. The populational motor unit discharge frequency was then used to continuously predict finger forces based on a linear regression model. The force prediction performance was compared with a motor unit decomposition method and the conventional EMG amplitude-based method. Our results showed that the correlation coefficient between the predicted and the recorded forces of the CNN approach was on average 0.91, compared with the offline decomposition method of 0.89, the online decomposition method of 0.82, and the EMG amplitude method of 0.81. Additionally, the CNN based approach showed generalizable performance, with CNN trained on one finger applicable to a different finger. The outcomes suggest that our CNN based algorithm can offer an accurate and efficient force decoding method for human-machine interactions.

摘要

对预期动作进行连续且准确的解码对于人机交互至关重要。在此,我们开发了一种新颖的方法,利用并行卷积神经网络(CNN)对单个手指的力进行实时连续预测。我们在不进行尖峰分类的情况下,以并行结构使用CNN提取群体运动单位放电频率。基于来自高密度肌电图(HD-EMG)的两个特征,即时域能量热图和频谱图,对CNN参数进行训练。然后,基于线性回归模型,利用群体运动单位放电频率连续预测手指力。将力预测性能与运动单位分解方法和传统的基于肌电图幅度的方法进行比较。我们的结果表明,CNN方法预测力与记录力之间的相关系数平均为0.91,相比之下,离线分解方法为0.89,在线分解方法为0.82,肌电图幅度方法为0.81。此外,基于CNN的方法表现出可推广的性能,在一根手指上训练的CNN适用于另一根手指。这些结果表明,我们基于CNN的算法可为人机交互提供一种准确且高效的力解码方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验