Suppr超能文献

基于高密度表面肌电的三维卷积神经网络手势识别

High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.

机构信息

Shenzhen Academy of Robotics, Shenzhen 518057, China.

School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China.

出版信息

Sensors (Basel). 2020 Feb 21;20(4):1201. doi: 10.3390/s20041201.

Abstract

High-density surface electromyography (HD-sEMG) and deep learning technology are becoming increasingly used in gesture recognition. Based on electrode grid data, information can be extracted in the form of images that are generated with instant values of multi-channel sEMG signals. In previous studies, image-based, two-dimensional convolutional neural networks (2D CNNs) have been applied in order to recognize patterns in the electrical activity of muscles from an instantaneous image. However, 2D CNNs with 2D kernels are unable to handle a sequence of images that carry information concerning how the instantaneous image evolves with time. This paper presents a 3D CNN with 3D kernels to capture both spatial and temporal structures from sequential sEMG images and investigates its performance on HD-sEMG-based gesture recognition in comparison to the 2D CNN. Extensive experiments were carried out on two benchmark datasets (i.e., CapgMyo DB-a and CSL-HDEMG). The results show that, where the same network architecture is used, 3D CNN can achieve a better performance than 2D CNN, especially for CSL-HDEMG, which contains the dynamic part of finger movement. For CapgMyo DB-a, the accuracy of 3D CNN was 1% higher than 2D CNN when the recognition window length was equal to 40 ms, and was 1.5% higher when equal to 150 ms. For CSL-HDEMG, the accuracies of 3D CNN were 15.3% and 18.6% higher than 2D CNN when the window length was equal to 40 ms and 150 ms, respectively. Furthermore, 3D CNN achieves a competitive performance in comparison to the baseline methods.

摘要

高密度表面肌电图 (HD-sEMG) 和深度学习技术在手势识别中得到了越来越多的应用。基于电极网格数据,可以以图像的形式提取信息,这些图像是由多通道 sEMG 信号的即时值生成的。在以前的研究中,基于图像的二维卷积神经网络 (2D CNN) 已被应用于从即时图像中识别肌肉电活动的模式。然而,具有二维核的 2D CNN 无法处理携带有关即时图像随时间如何演变的信息的序列图像。本文提出了一种具有三维核的 3D CNN,用于从连续 sEMG 图像中捕获空间和时间结构,并将其在基于 HD-sEMG 的手势识别中的性能与 2D CNN 进行比较。在两个基准数据集(即 CapgMyo DB-a 和 CSL-HDEMG)上进行了广泛的实验。结果表明,在使用相同的网络架构的情况下,3D CNN 可以比 2D CNN 实现更好的性能,特别是对于包含手指运动动态部分的 CSL-HDEMG。对于 CapgMyo DB-a,当识别窗口长度等于 40ms 时,3D CNN 的准确率比 2D CNN 高 1%,当等于 150ms 时,3D CNN 的准确率比 2D CNN 高 1.5%。对于 CSL-HDEMG,当窗口长度等于 40ms 和 150ms 时,3D CNN 的准确率比 2D CNN 分别高 15.3%和 18.6%。此外,3D CNN 的性能与基线方法相比具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc8/7070985/953540120633/sensors-20-01201-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验