Biology Department, Stanford University, Stanford, CA 94305, USA.
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
Plant Physiol. 2021 Mar 15;185(2):503-518. doi: 10.1093/plphys/kiaa032.
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.
叶片中的光合作用产生固定碳资源和必需代谢物,这些物质支持着根等汇组织。这两种代谢物,蔗糖和生长素,促进根系生长,但光合作用活性与根系结构控制之间的明确联系尚未被探索。通过筛选鉴定调节根系结构的途径的突变体,我们在拟南芥 CYCLOPHILIN 38(CYP38)基因中发现了一个突变,该突变导致提前出现的侧根积累。CYP38 先前被报道稳定叶绿体中的光系统 II(PSII)。CYP38 在地上部分表达丰富,嫁接实验表明该基因非细胞自主地作用以促进侧根出现。在低光照条件下,野生型植物的生长表现出与 cyp38 相同的侧根出现缺陷,而 PSII 依赖的电子传递或烟酰胺腺嘌呤二核苷酸磷酸(NADPH)产生的抑制也是如此。重要的是,这些对光合作用活性的干扰迅速抑制侧根出现,这与它们对地上部分大小的影响分开。补充外源蔗糖在很大程度上挽救了 cyp38 中的主根(PR)生长,但不能挽救侧根生长。色氨酸到生长素(吲哚-3-乙酸(IAA))的生物合成依赖于光合作用过程中产生的还原剂。一致地,我们发现,在低光照下生长的野生型幼苗和 cyp38 突变体在根组织中的 IAA 水平显著降低。IAA 处理挽救了 cyp38 的侧根缺陷,表明光合作用通过 IAA 生物合成促进侧根出现。这些数据直接证实了 CYP38 依赖的光合作用活性在支持根生长中的重要性,并定义了两种代谢物在光限制条件下细化根系结构的具体贡献。