Dagar Janardan, Fenske Markus, Al-Ashouri Amran, Schultz Christof, Li Bor, Köbler Hans, Munir Rahim, Parmasivam Gopinath, Li Jinzhao, Levine Igal, Merdasa Aboma, Kegelmann Lukas, Näsström Hampus, Marquez Jose A, Unold Thomas, Többens Daniel M, Schlatmann Rutger, Stegemann Bert, Abate Antonio, Albrecht Steve, Unger Eva
Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany.
Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany.
ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13022-13033. doi: 10.1021/acsami.0c17893. Epub 2021 Mar 15.
Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" CsFAMAPbBrI (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, , due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, -, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.
通过优化钙钛矿前驱体的组成以及与选择性接触层的界面,我们制备出了功率转换效率(PCE)为22.3%的p-i-n型钙钛矿太阳能电池(PSC)。这是吸收层带隙为1.63 eV的PSC的新性能记录。我们证明,该器件的高性能源自以下几个方面的协同作用:(1)在“三阳离子”CsFAMAPbBrI(Cs-MAFA)钙钛矿前驱体油墨中引入氯化甲脒(FACl)作为添加剂时,钙钛矿吸收层质量得到改善;(2)由于使用氟化锂(LiF)界面缓冲层减少了复合损耗,开路电压增加;(3)在ITO电极上采用[2-(9-咔唑-9-基)乙基]膦酸(2PACz)自组装单层(SAM)形成高质量的空穴选择性接触层。虽然所有器件在制备后均表现出高性能,这由电流密度-电压(J-V)测量确定,但考虑长期稳定性数据时,器件性能存在显著差异。通过在金属卤化物钙钛矿薄膜沉积中使用FACl作为添加剂,补偿了引入LiF中间层后器件长期稳定性的降低。优化后的器件在最大功率点(MPP)跟踪超过700小时的过程中,保持了约80%的初始平均PCE。我们将优化后的器件结构扩大到更大面积,实现了完全激光图案化的串联互连微型模块,对于2.2平方厘米的有源面积,其PCE为19.4%。稳健的器件结构和可重复的沉积方法是基于PSC的高性能和稳定大面积单结及串联模块的基础。