Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania. .
Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Romania.
J Gastrointestin Liver Dis. 2021 Mar 12;30(1):59-65. doi: 10.15403/jgld-3212.
Mucosal healing (MH) is associated with a stable course of Crohn's disease (CD) which can be assessed by confocal laser endomicroscopy (CLE). To minimize the operator's errors and automate assessment of CLE images, we used a deep learning (DL) model for image analysis. We hypothesized that DL combined with convolutional neural networks (CNNs) and long short-term memory (LSTM) can distinguish between normal and inflamed colonic mucosa from CLE images.
The study included 54 patients, 32 with known active CD, and 22 control patients (18 CD patients with MH and four normal mucosa patients with no history of inflammatory bowel diseases). We designed and trained a deep convolutional neural network to detect active CD using 6,205 endomicroscopy images classified as active CD inflammation (3,672 images) and control mucosal healing or no inflammation (2,533 images). CLE imaging was performed on four colorectal areas and the terminal ileum. Gold standard was represented by the histopathological evaluation. The dataset was randomly split in two distinct training and testing datasets: 80% data from each patient were used for training and the remaining 20% for testing. The training dataset consists of 2,892 images with inflammation and 2,189 control images. The testing dataset consists of 780 images with inflammation and 344 control images of the colon. We used a CNN-LSTM model with four convolution layers and one LSTM layer for automatic detection of MH and CD diagnosis from CLE images.
CLE investigation reveals normal colonic mucosa with round crypts and inflamed mucosa with irregular crypts and tortuous and dilated blood vessels. Our method obtained a 95.3% test accuracy with a specificity of 92.78% and a sensitivity of 94.6%, with an area under each receiver operating characteristic curves of 0.98.
Using machine learning algorithms on CLE images can successfully differentiate between inflammation and normal ileocolonic mucosa and can be used as a computer aided diagnosis for CD. Future clinical studies with a larger patient spectrum will validate our results and improve the CNN-SSTM model.
黏膜愈合(MH)与克罗恩病(CD)的稳定病程相关,可通过共聚焦激光内镜检查(CLE)进行评估。为了最大限度地减少操作者的错误并实现 CLE 图像的自动评估,我们使用了深度学习(DL)模型进行图像分析。我们假设 DL 与卷积神经网络(CNN)和长短期记忆(LSTM)相结合,可以区分 CLE 图像中的正常和炎症性结肠黏膜。
本研究纳入了 54 名患者,其中 32 名患者患有已知的活动性 CD,22 名对照患者(18 名 CD 患者黏膜愈合和 4 名无炎症性肠病病史的正常黏膜患者)。我们设计并训练了一个深度卷积神经网络,使用 6205 张分类为活动性 CD 炎症(3672 张)和对照黏膜愈合或无炎症(2533 张)的内镜图像来检测活动性 CD。对四个结直肠区域和末端回肠进行 CLE 成像。金标准由组织病理学评估代表。数据集随机分为两个独立的训练和测试数据集:每个患者的 80%的数据用于训练,其余 20%用于测试。训练数据集包括 2892 张炎症图像和 2189 张对照图像。测试数据集包括 780 张炎症图像和 344 张结肠对照图像。我们使用具有四个卷积层和一个 LSTM 层的 CNN-LSTM 模型,从 CLE 图像中自动检测 MH 和 CD 诊断。
CLE 检查显示圆形隐窝的正常结肠黏膜和不规则隐窝、扭曲和扩张血管的炎症性黏膜。我们的方法在测试中获得了 95.3%的准确率,特异性为 92.78%,敏感性为 94.6%,每个受试者工作特征曲线的曲线下面积为 0.98。
使用机器学习算法对 CLE 图像进行分析,可以成功地区分炎症和正常回肠结肠黏膜,并可作为 CD 的计算机辅助诊断。未来的临床研究将扩大患者谱来验证我们的结果并改进 CNN-SSTM 模型。