Suppr超能文献

JHU-ISI 手势与技能评估工作集 II 的运动分析:学习曲线分析。

Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set II: learning curve analysis.

机构信息

Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.

Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2021 Apr;16(4):589-595. doi: 10.1007/s11548-021-02339-8. Epub 2021 Mar 15.

Abstract

PURPOSE

The Johns Hopkins-Intuitive Gesture and Skill Assessment Working Set (JIGSAWS) dataset is used to develop robotic surgery skill assessment tools, but there has been no detailed analysis of this dataset. The aim of this study is to perform a learning curve analysis of the existing JIGSAWS dataset.

METHODS

Five trials were performed in JIGSAWS by eight participants (four novices, two intermediates and two experts) for three exercises (suturing, knot-tying and needle passing). Global Rating Scores and time, path length and movements were analyzed quantitatively and qualitatively by graphical analysis.

RESULTS

There are no significant differences in Global Rating Scale scores over time. Time in the suturing exercise and path length in needle passing had significant differences. Other kinematic parameters were not significantly different. Qualitative analysis shows a learning curve only for suturing. Cumulative sum analysis suggests completion of the learning curve for suturing by trial 4.

CONCLUSIONS

The existing JIGSAWS dataset does not show a quantitative learning curve for Global Rating Scale scores, or most kinematic parameters which may be due in part to the limited size of the dataset. Qualitative analysis shows a learning curve for suturing. Cumulative sum analysis suggests completion of the suturing learning curve by trial 4. An expanded dataset is needed to facilitate subset analyses.

摘要

目的

约翰霍普金斯直觉手势和技能评估工作集(JIGSAWS)数据集用于开发机器人手术技能评估工具,但尚未对此数据集进行详细分析。本研究的目的是对现有的 JIGSAWS 数据集进行学习曲线分析。

方法

八名参与者(四名新手、两名中级和两名专家)在 JIGSAWS 中进行了五次试验,进行了三项练习(缝合、打结和穿针)。通过图形分析对全球评分和时间、路径长度和动作进行定量和定性分析。

结果

全球评分量表得分随时间无显著差异。缝合练习的时间和穿针的路径长度有显著差异。其他运动学参数没有显著差异。定性分析仅显示缝合的学习曲线。累积和分析表明,缝合的学习曲线在第 4 次试验中完成。

结论

现有的 JIGSAWS 数据集在全球评分量表得分或大多数运动学参数方面没有显示出定量的学习曲线,这可能部分是由于数据集的规模有限。定性分析显示缝合有学习曲线。累积和分析表明,缝合的学习曲线在第 4 次试验中完成。需要扩展数据集以促进子集分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验