Suppr超能文献

使用机器人视频和运动评估软件对 JHU-ISI 手势和技能评估工作集进行运动分析。

Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set using Robotics Video and Motion Assessment Software.

机构信息

Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.

Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2020 Dec;15(12):2017-2025. doi: 10.1007/s11548-020-02259-z. Epub 2020 Oct 6.

Abstract

PURPOSE

The JIGSAWS dataset is a fixed dataset of robot-assisted surgery kinematic data used to develop predictive models of skill. The purpose of this study is to analyze the relationships of self-defined skill level with global rating scale scores and kinematic data (time, path length and movements) from three exercises (suturing, knot-tying and needle passing) (right and left hands) in the JIGSAWS dataset.

METHODS

Global rating scale scores are reported in the JIGSAWS dataset and kinematic data were calculated using ROVIMAS software. Self-defined skill levels are in the dataset (novice, intermediate, expert). Correlation coefficients (global rating scale-skill level and global rating scale-kinematic parameters) were calculated. Kinematic parameters were compared among skill levels.

RESULTS

Global rating scale scores correlated with skill in the knot-tying exercise (r = 0.55, p = 0.0005). In the suturing exercise, time, path length (left) and movements (left) were significantly different (p < 0.05) for novices and experts. For knot-tying, time, path length (right and left) and movements (right) differed significantly for novices and experts. For needle passing, no kinematic parameter was significantly different comparing novices and experts. The only kinematic parameter that correlated with global rating scale scores is time in the knot-tying exercise.

CONCLUSION

Global rating scale scores weakly correlate with skill level and kinematic parameters. The ability of kinematic parameters to differentiate among self-defined skill levels is inconsistent. Additional data are needed to enhance the dataset and facilitate subset analyses and future model development.

摘要

目的

JIGSAWS 数据集是机器人辅助手术运动学数据的固定数据集,用于开发技能预测模型。本研究旨在分析自我定义的技能水平与全球评分量表评分以及 JIGSAWS 数据集中三个练习(缝合、打结和穿针)(右手和左手)的运动学数据(时间、路径长度和动作)之间的关系。

方法

全球评分量表评分在 JIGSAWS 数据集中报告,运动学数据使用 ROVIMAS 软件计算。自我定义的技能水平在数据集中(新手、中级、专家)。计算了相关系数(全球评分量表-技能水平和全球评分量表-运动学参数)。比较了不同技能水平之间的运动学参数。

结果

全球评分量表评分与打结练习中的技能相关(r=0.55,p=0.0005)。在缝合练习中,新手和专家之间的时间、路径长度(左手)和动作(左手)有显著差异(p<0.05)。对于打结练习,新手和专家之间的时间、路径长度(右手和左手)和动作(右手)有显著差异。对于穿针练习,新手和专家之间没有运动学参数有显著差异。唯一与全球评分量表评分相关的运动学参数是打结练习中的时间。

结论

全球评分量表评分与技能水平和运动学参数弱相关。运动学参数区分自我定义的技能水平的能力不一致。需要更多的数据来增强数据集,并促进子数据集分析和未来的模型开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c11/7671974/ad2f1ab88f3c/11548_2020_2259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验