Suppr超能文献

用于超长寿命准固态锂金属电池的复合聚合物电解质中的原位分子间相互作用

In-Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries.

作者信息

He Kangqiang, Cheng Samson Ho-Sum, Hu Jieying, Zhang Yangqian, Yang Huiwen, Liu Yingying, Liao Wenchao, Chen Dazhu, Liao Chengzhu, Cheng Xin, Lu Zhouguang, He Jun, Tang Jiaoning, Li Robert K Y, Liu Chen

机构信息

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2021 May 17;60(21):12116-12123. doi: 10.1002/anie.202103403. Epub 2021 Apr 15.

Abstract

Solid-state lithium metal batteries built with composite polymer electrolytes using cubic garnets as active fillers are particularly attractive owing to their high energy density, easy manufacturing and inherent safety. However, the uncontrollable formation of intractable contaminant on garnet surface usually aggravates poor interfacial contact with polymer matrix and deteriorates Li pathways. Here we report a rational designed intermolecular interaction in composite electrolytes that utilizing contaminants as reaction initiator to generate Li conducting ether oligomers, which further emerge as molecular cross-linkers between inorganic fillers and polymer matrix, creating dense and homogeneous interfacial Li immigration channels in the composite electrolytes. The delicate design results in a remarkable ionic conductivity of 1.43×10  S cm and an unprecedented 1000 cycles with 90 % capacity retention at room temperature is achieved for the assembled solid-state batteries.

摘要

采用立方石榴石作为活性填料构建的复合聚合物电解质固态锂金属电池,因其高能量密度、易于制造和固有的安全性而格外引人注目。然而,石榴石表面难以控制地形成难处理的污染物,通常会加剧与聚合物基体的不良界面接触,并使锂传输路径恶化。在此,我们报道了一种在复合电解质中合理设计的分子间相互作用,该相互作用利用污染物作为反应引发剂来生成锂导电醚低聚物,这些低聚物进一步成为无机填料与聚合物基体之间的分子交联剂,在复合电解质中创建密集且均匀的界面锂迁移通道。这种精妙的设计使得复合电解质的离子电导率显著达到1.43×10⁻³ S cm⁻¹,并且组装的固态电池在室温下实现了前所未有的1000次循环以及90%的容量保持率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验