Suppr超能文献

通过选择性溶解定制固体电解质界面的化学成分以实现长寿命微米级硅阳极

Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode.

作者信息

Tian Yi-Fan, Tan Shuang-Jie, Yang Chunpeng, Zhao Yu-Ming, Xu Di-Xin, Lu Zhuo-Ya, Li Ge, Li Jin-Yi, Zhang Xu-Sheng, Zhang Chao-Hui, Tang Jilin, Zhao Yao, Wang Fuyi, Wen Rui, Xu Quan, Guo Yu-Guo

机构信息

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (CAS), 100190, Beijing, P. R. China.

School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China.

出版信息

Nat Commun. 2023 Nov 9;14(1):7247. doi: 10.1038/s41467-023-43093-6.

Abstract

Micron-sized Si anode promises a much higher theoretical capacity than the traditional graphite anode and more attractive application prospect compared to its nanoscale counterpart. However, its severe volume expansion during lithiation requires solid electrolyte interphase (SEI) with reinforced mechanical stability. Here, we propose a solvent-induced selective dissolution strategy to in situ regulate the mechanical properties of SEI. By introducing a high-donor-number solvent, gamma-butyrolactone, into conventional electrolytes, low-modulus components of the SEI, such as Li alkyl carbonates, can be selectively dissolved upon cycling, leaving a robust SEI mainly consisting of lithium fluoride and polycarbonates. With this strategy, raw micron-sized Si anode retains 87.5% capacity after 100 cycles at 0.5 C (1500 mA g, 25°C), which can be improved to >300 cycles with carbon-coated micron-sized Si anode. Furthermore, the Si||LiNiCoMnO battery using the raw micron-sized Si anode with the selectively dissolved SEI retains 83.7% capacity after 150 cycles at 0.5 C (90 mA g). The selective dissolution effect for tailoring the SEI, as well as the corresponding cycling life of the Si anodes, is positively related to the donor number of the solvents, which highlights designing high-donor-number electrolytes as a guideline to tailor the SEI for stabilizing volume-changing alloying-type anodes in high-energy rechargeable batteries.

摘要

微米级硅阳极比传统石墨阳极具有更高的理论容量,与纳米级硅阳极相比,其应用前景更具吸引力。然而,其在锂化过程中的严重体积膨胀需要具有增强机械稳定性的固体电解质界面(SEI)。在此,我们提出一种溶剂诱导的选择性溶解策略,以原位调节SEI的机械性能。通过将高给体数溶剂γ-丁内酯引入传统电解质中,SEI的低模量成分,如碳酸锂烷基酯,在循环过程中可被选择性溶解,从而留下主要由氟化锂和聚碳酸酯组成的坚固SEI。采用这种策略,原始微米级硅阳极在0.5 C(1500 mA g,25°C)下循环100次后仍保留87.5%的容量,对于碳包覆的微米级硅阳极,这一容量可提高到超过300次循环。此外,使用具有选择性溶解SEI的原始微米级硅阳极的Si||LiNiCoMnO电池在0.5 C(90 mA g)下循环150次后仍保留83.7%的容量。用于定制SEI的选择性溶解效应以及硅阳极相应的循环寿命与溶剂的给体数呈正相关,这突出了设计高给体数电解质作为一种指导方针,以定制SEI来稳定高能可充电电池中体积变化合金型阳极。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa3d/10636032/8a7c60799f0e/41467_2023_43093_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验