Suppr超能文献

FRAGSITE:基于片段的虚拟配体筛选方法。

FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.

机构信息

Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332-2000, United States.

出版信息

J Chem Inf Model. 2021 Apr 26;61(4):2074-2089. doi: 10.1021/acs.jcim.0c01160. Epub 2021 Mar 16.

Abstract

To reduce time and cost, virtual ligand screening (VLS) often precedes experimental ligand screening in modern drug discovery. Traditionally, high-resolution structure-based docking approaches rely on experimental structures, while ligand-based approaches need known binders to the target protein and only explore their nearby chemical space. In contrast, our structure-based FINDSITE approach takes advantage of predicted, low-resolution structures and information from ligands that bind distantly related proteins whose binding sites are similar to the target protein. Using a boosted tree regression machine learning framework, we significantly improved FINDSITE by integrating ligand fragment scores as encoded by molecular fingerprints with the global ligand similarity scores of FINDSITE. The new approach, FRAGSITE, exploits our observation that ligand fragments, e.g., rings, tend to interact with stereochemically conserved protein subpockets that also occur in evolutionarily unrelated proteins. FRAGSITE was benchmarked on the 102 protein DUD-E set, where any template protein whose sequence identify >30% to the target was excluded. Within the top 100 ranked molecules, FRAGSITE improves VLS precision and recall by 14.3 and 18.5%, respectively, relative to FINDSITE. Moreover, the mean top 1% enrichment factor increases from 25.2 to 30.2. On average, both outperform state-of-the-art deep learning-based methods such as AtomNet. On the more challenging unbiased set LIT-PCBA, FRAGSITE also shows better performance than ligand similarity-based and docking approaches such as two-dimensional ECFP4 and Surflex-Dock v.3066. On a subset of 23 targets from DEKOIS 2.0, FRAGSITE shows much better performance than the boosted tree regression-based, vScreenML scoring function. Experimental testing of FRAGSITE's predictions shows that it has more hits and covers a more diverse region of chemical space than FINDSITE. For the two proteins that were experimentally tested, DHFR, a well-studied protein that catalyzes the conversion of dihydrofolate to tetrahydrofolate, and the kinase ACVR1, FRAGSITE identified new small-molecule nanomolar binders. Interestingly, one new binder of DHFR is a kinase inhibitor predicted to bind in a new subpocket. For ACVR1, FRAGSITE identified new molecules that have diverse scaffolds and estimated nanomolar to micromolar affinities. Thus, FRAGSITE shows significant improvement over prior state-of-the-art ligand virtual screening approaches. A web server is freely available for academic users at http:/sites.gatech.edu/cssb/FRAGSITE.

摘要

为了减少时间和成本,虚拟配体筛选(VLS)通常先于现代药物发现中的实验配体筛选。传统上,基于高分辨率结构的对接方法依赖于实验结构,而基于配体的方法则需要目标蛋白的已知结合物,并且仅探索其附近的化学空间。相比之下,我们基于结构的 FINDSITE 方法利用了预测的低分辨率结构和与结合位点与目标蛋白相似的远距离相关蛋白结合的配体信息。我们使用了基于提升树回归的机器学习框架,通过将配体片段得分(由分子指纹编码)与 FINDSITE 的全局配体相似性得分相结合,显著改进了 FINDSITE。新方法 FRAGSITE 利用了我们的观察结果,即配体片段(例如环)倾向于与立体化学保守的蛋白质亚口袋相互作用,这些亚口袋也存在于进化上无关的蛋白质中。FRAGSITE 在 102 个蛋白质 DUD-E 集上进行了基准测试,其中任何序列与目标蛋白的相似度>30%的模板蛋白都被排除在外。在排名前 100 的分子中,FRAGSITE 相对于 FINDSITE 分别将 VLS 的精度和召回率提高了 14.3%和 18.5%。此外,平均前 1%的富集因子从 25.2 增加到 30.2。平均而言,这两种方法都优于基于深度学习的最新方法,如 AtomNet。在更具挑战性的无偏 LIT-PCBA 集上,FRAGSITE 也显示出优于配体相似性和对接方法的性能,如二维 ECFP4 和 Surflex-Dock v.3066。在 DEKOIS 2.0 的 23 个目标子集上,FRAGSITE 显示出比基于提升树回归的 vScreenML 评分函数更好的性能。对 FRAGSITE 预测的实验测试表明,它的命中数量更多,覆盖的化学空间也更加多样化。对于经过实验测试的两种蛋白质,DHFR 是一种研究充分的蛋白,可催化二氢叶酸转化为四氢叶酸,以及激酶 ACVR1,FRAGSITE 鉴定出了新的小分子纳摩尔结合物。有趣的是,DHFR 的一种新结合物是一种预测在新亚口袋中结合的激酶抑制剂。对于 ACVR1,FRAGSITE 鉴定出了具有不同支架和估计纳摩尔到微摩尔亲和力的新分子。因此,FRAGSITE 相对于之前的最先进的配体虚拟筛选方法有了显著的改进。学术用户可在 http:/sites.gatech.edu/cssb/FRAGSITE 免费访问 FRAGSITE 的网络服务器。

相似文献

1
FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.FRAGSITE:基于片段的虚拟配体筛选方法。
J Chem Inf Model. 2021 Apr 26;61(4):2074-2089. doi: 10.1021/acs.jcim.0c01160. Epub 2021 Mar 16.
9
LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening.LIT-PCBA:用于机器学习和虚拟筛选的无偏数据集。
J Chem Inf Model. 2020 Sep 28;60(9):4263-4273. doi: 10.1021/acs.jcim.0c00155. Epub 2020 Apr 23.
10
FINDSITE: a threading-based approach to ligand homology modeling.FINDSITE:一种基于穿线法的配体同源建模方法。
PLoS Comput Biol. 2009 Jun;5(6):e1000405. doi: 10.1371/journal.pcbi.1000405. Epub 2009 Jun 5.

引用本文的文献

1
Functional protein mining with conformal guarantees.具有共形保证的功能蛋白质挖掘。
Nat Commun. 2025 Jan 2;16(1):85. doi: 10.1038/s41467-024-55676-y.

本文引用的文献

2
LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening.LIT-PCBA:用于机器学习和虚拟筛选的无偏数据集。
J Chem Inf Model. 2020 Sep 28;60(9):4263-4273. doi: 10.1021/acs.jcim.0c00155. Epub 2020 Apr 23.
6
AlphaFold at CASP13.AlphaFold 在 CASP13 中的应用。
Bioinformatics. 2019 Nov 1;35(22):4862-4865. doi: 10.1093/bioinformatics/btz422.
8
PubChem 2019 update: improved access to chemical data.PubChem 2019 年更新:改善化学数据获取。
Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109. doi: 10.1093/nar/gky1033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验