Roy Ambrish, Srinivasan Bharath, Skolnick Jeffrey
Center for the Study of Systems Biology, Georgia Institute of Technology , 250 14th Street NW, Atlanta, Georgia 30318, United States.
J Chem Inf Model. 2015 Aug 24;55(8):1757-70. doi: 10.1021/acs.jcim.5b00232. Epub 2015 Aug 12.
Often in pharmaceutical research the goal is to identify small molecules that can interact with and appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins lack both known structures and small molecule binders, prerequisites of many virtual screening, VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from homologous and perhaps evolutionarily distant template proteins, has been shown to be a powerful VS approach to identify possible binding ligands. However, if we want to target a specific pocket for which there is no homologous holo template protein structure, then LHM will not work. To address this issue, in a new pocket-based approach, PoLi, we generalize LHM by exploiting the fact that the number of distinct small molecule ligand-binding pockets in proteins is small. PoLi identifies similar ligand-binding pockets in a holo template protein library, selectively copies relevant parts of template ligands, and uses them for VS. In practice, PoLi is a hybrid structure and ligand-based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity metrics for improved virtual screening performance. On standard DUD and DUD-E benchmark databases, using modeled receptor structures, PoLi achieves an average enrichment factor of 13.4 and 9.6, respectively, in the top 1% of the screened library. In contrast, traditional docking-based VS using AutoDock Vina and homology-based VS using FINDSITE(filt) have an average enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets, respectively. Experimental validation of PoLi predictions on dihydrofolate reductase, DHFR, using differential scanning fluorimetry, DSF, identifies multiple ligands with diverse molecular scaffolds, thus demonstrating the advantage of PoLi over current state-of-the-art VS methods.
在药物研究中,目标通常是识别能够与新的蛋白质靶点相互作用并适当改变其生物学行为的小分子。不幸的是,大多数蛋白质既缺乏已知结构,也没有小分子结合剂,而这是许多虚拟筛选(VS)方法的前提条件。对于此类蛋白质,配体同源性建模(LHM),即从同源且可能在进化上距离较远的模板蛋白质中复制配体,已被证明是一种识别可能的结合配体的强大VS方法。然而,如果我们想要针对一个没有同源全酶模板蛋白质结构的特定口袋,那么LHM将不起作用。为了解决这个问题,在一种新的基于口袋的方法PoLi中,我们利用蛋白质中不同小分子配体结合口袋数量较少这一事实对LHM进行了推广。PoLi在全酶模板蛋白质库中识别相似的配体结合口袋,选择性地复制模板配体的相关部分,并将其用于VS。实际上,PoLi是一种混合的基于结构和配体的VS算法,它整合了基于二维指纹和基于三维形状的相似性度量,以提高虚拟筛选性能。在标准的DUD和DUD-E基准数据库上,使用建模的受体结构,PoLi在筛选库的前1%中分别实现了平均富集因子13.4和9.6。相比之下,使用AutoDock Vina的传统基于对接的VS和使用FINDSITE(filt) 的基于同源性的VS在DUD(DUD-E)集上的平均富集分别为1.6(3.0)和9.0(7.9)。使用差示扫描荧光法(DSF)对二氢叶酸还原酶(DHFR)上的PoLi预测进行实验验证,识别出了具有不同分子支架的多种配体,从而证明了PoLi相对于当前最先进的VS方法的优势。