Suppr超能文献

FINDSITE(组合):一种基于配体穿线/结构的蛋白质组学规模的虚拟配体筛选方法。

FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.

机构信息

Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 250 14th Street, N.W., Atlanta, Georgia 30318, USA.

出版信息

J Chem Inf Model. 2013 Jan 28;53(1):230-40. doi: 10.1021/ci300510n. Epub 2012 Dec 28.

Abstract

Virtual ligand screening is an integral part of the modern drug discovery process. Traditional ligand-based, virtual screening approaches are fast but require a set of structurally diverse ligands known to bind to the target. Traditional structure-based approaches require high-resolution target protein structures and are computationally demanding. In contrast, the recently developed threading/structure-based FINDSITE-based approaches have the advantage that they are as fast as traditional ligand-based approaches and yet overcome the limitations of traditional ligand- or structure-based approaches. These new methods can use predicted low-resolution structures and infer the likelihood of a ligand binding to a target by utilizing ligand information excised from the target's remote or close homologous proteins and/or libraries of ligand binding databases. Here, we develop an improved version of FINDSITE, FINDSITE(filt), that filters out false positive ligands in threading identified templates by a better binding site detection procedure that includes information about the binding site amino acid similarity. We then combine FINDSITE(filt) with FINDSITE(X) that uses publicly available binding databases ChEMBL and DrugBank for virtual ligand screening. The combined approach, FINDSITE(comb), is compared to two traditional docking methods, AUTODOCK Vina and DOCK 6, on the DUD benchmark set. It is shown to be significantly better in terms of enrichment factor, dependence on target structure quality, and speed. FINDSITE(comb) is then tested for virtual ligand screening on a large set of 3576 generic targets from the DrugBank database as well as a set of 168 Human GPCRs. Excluding close homologues, FINDSITE(comb) gives an average enrichment factor of 52.1 for generic targets and 22.3 for GPCRs within the top 1% of the screened compound library. Around 65% of the targets have better than random enrichment factors. The performance is insensitive to target structure quality, as long as it has a TM-score ≥ 0.4 to native. Thus, FINDSITE(comb) makes the screening of millions of compounds across entire proteomes feasible. The FINDSITE(comb) web service is freely available for academic users at http://cssb.biology.gatech.edu/skolnick/webservice/FINDSITE-COMB/index.html.

摘要

虚拟配体筛选是现代药物发现过程的一个组成部分。传统的基于配体的虚拟筛选方法速度很快,但需要一组已知与靶标结合的结构多样的配体。传统的基于结构的方法需要高分辨率的靶标蛋白结构,并且计算量很大。相比之下,最近开发的基于穿线/结构的 FINDSITE 方法具有优势,它们与传统的基于配体的方法一样快,但克服了传统的基于配体或基于结构的方法的局限性。这些新方法可以使用预测的低分辨率结构,并通过利用从靶标远程或近亲蛋白和/或配体结合数据库库中切除的配体信息,推断配体与靶标的结合可能性。在这里,我们开发了 FINDSITE 的一个改进版本 FINDSITE(filt),它通过更好的结合位点检测程序来过滤掉穿线识别模板中的假阳性配体,该程序包括结合位点氨基酸相似性的信息。然后,我们将 FINDSITE(filt)与 FINDSITE(X) 结合使用,后者使用公共可用的结合数据库 ChEMBL 和 DrugBank 进行虚拟配体筛选。组合方法 FINDSITE(comb)与两种传统对接方法 AUTODOCK Vina 和 DOCK 6 在 DUD 基准集上进行了比较。结果表明,它在富集因子、对靶标结构质量的依赖性和速度方面都有显著提高。然后,我们在 DrugBank 数据库中的 3576 个通用靶标和 168 个人类 GPCR 数据集上对 FINDSITE(comb)进行了虚拟配体筛选测试。排除近亲后,FINDSITE(comb)对通用靶标在筛选化合物库的前 1%中平均富集因子为 52.1,对 GPCR 为 22.3。大约 65%的靶标具有优于随机的富集因子。只要靶标具有 TM-score≥0.4 到天然状态,性能就对靶标结构质量不敏感。因此,FINDSITE(comb)使得对整个蛋白质组中的数百万种化合物进行筛选成为可能。FINDSITE(comb)网络服务可在 academic users 免费使用,网址为 http://cssb.biology.gatech.edu/skolnick/webservice/FINDSITE-COMB/index.html。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验