Moschetta Matteo, Lee Jong-Young, Rodrigues João, Podestà Alice, Varvicchio Omar, Son Jangyup, Lee Yangjin, Kim Kwanpyo, Lee Gwan-Hyoung, Benfenati Fabio, Bramini Mattia, Capasso Andrea
Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, L.go Rosanna Benzi 10, Genova, 16132, Italy.
Department of Experimental Medicine, University of Genova, Viale Benedetto XV, Genova, 16132, Italy.
Adv Biol (Weinh). 2021 Jan;5(1):e2000177. doi: 10.1002/adbi.202000177. Epub 2021 Jan 4.
Graphene is regarded as a viable bio-interface for neuroscience due to its biocompatibility and electrical conductivity, which would contribute to efficient neuronal network signaling. Here, monolayer graphene grown via chemical vapor deposition is treated with remote hydrogen plasma to demonstrate that hydrogenated graphene (HGr) fosters improved cell-to-cell communication with respect to pristine graphene in primary cortical neurons. When transferred to polyethylene terephthalate, HGr exhibits higher wettability than graphene (water contact angle of 83.7° vs 40.7°), while preserving electrical conductivity (≈3 kΩ □ ). A rich and mature network is observed to develop onto HGr. The intrinsic excitability and firing properties of neurons plated onto HGr appears unaltered, while the basic passive and active membrane properties are fully preserved. The formation of excitatory synaptic connections increases in HGr with respect to pristine graphene, leading to a doubled miniature excitatory postsynaptic current frequency. This study supports the use of hydrogenation for tailoring graphene into an improved neuronal interface, indicating that wettability, more than electrical conductivity, is the key parameter to be controlled. The use of HGr can bring about a deeper understanding of neuronal behavior on artificial bio-interfaces and provide new insight for graphene-based biomedical applications.
由于石墨烯具有生物相容性和导电性,有助于高效的神经网络信号传导,因此它被视为神经科学领域一种可行的生物界面。在此,通过化学气相沉积法生长的单层石墨烯经远程氢等离子体处理,结果表明,相对于原始石墨烯,氢化石墨烯(HGr)在原代皮层神经元中促进了细胞间更好的通讯。转移到聚对苯二甲酸乙二酯上后,HGr的润湿性高于石墨烯(水接触角分别为83.7°和40.7°),同时保持了导电性(约3 kΩ □)。观察到在HGr上形成了丰富且成熟的网络。接种在HGr上的神经元的内在兴奋性和放电特性未发生改变,而基本的被动和主动膜特性则完全保留。相对于原始石墨烯,HGr上兴奋性突触连接的形成有所增加,导致微小兴奋性突触后电流频率翻倍。这项研究支持通过氢化将石墨烯定制为改良的神经元界面,表明润湿性而非导电性是需要控制的关键参数。使用HGr可以更深入地了解神经元在人工生物界面上的行为,并为基于石墨烯的生物医学应用提供新的见解。