Suppr超能文献

用于肝内胆管癌风险分层和复发预测的转录组学特征

A Transcriptomic Signature for Risk-Stratification and Recurrence Prediction in Intrahepatic Cholangiocarcinoma.

机构信息

Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX.

Department of Surgery, Tokushima University, Tokushima, Japan.

出版信息

Hepatology. 2021 Sep;74(3):1371-1383. doi: 10.1002/hep.31803. Epub 2021 Jun 15.

Abstract

BACKGROUND AND AIMS

Tumor recurrence is frequent even in intrahepatic cholangiocarcinoma (ICC), and improved strategies are needed to identify patients at highest risk for such recurrence. We performed genome-wide expression profile analyses to discover and validate a gene signature associated with recurrence in patients with ICC.

APPROACH AND RESULTS

For biomarker discovery, we analyzed genome-wide transcriptomic profiling in ICC tumors from two public data sets: The Cancer Genome Atlas (n = 27) and GSE107943 (n = 28). We identified an eight-gene panel (BIRC5 [baculoviral IAP repeat containing 5], CDC20 [cell division cycle 20], CDH2 [cadherin 2], CENPW [centromere protein W], JPH1 [junctophilin 1], MAD2L1 [mitotic arrest deficient 2 like 1], NEIL3 [Nei like DNA glycosylase 3], and POC1A [POC1 centriolar protein A]) that robustly identified patients with recurrence in the discovery (AUC = 0.92) and in silico validation cohorts (AUC = 0.91). We next analyzed 241 specimens from patients with ICC (training cohort, n = 64; validation cohort, n = 177), followed by Cox proportional hazard regression analysis, to develop an integrated transcriptomic panel and establish a risk-stratification model for recurrence in ICC. We subsequently trained this transcriptomic panel in a clinical cohort (AUC = 0.89; 95% confidence interval [CI] = 0.79-0.95), followed by evaluating its performance in an independent validation cohort (AUC = 0.86; 95% CI = 0.80-0.90). By combining our transcriptomic panel with various clinicopathologic features, we established a risk-stratification model that was significantly superior for the identification of recurrence (AUC = 0.89; univariate HR = 6.08, 95% CI = 3.55-10.41, P < 0.01; and multivariate HR = 3.49, 95% CI = 1.81-6.71, P < 0.01). The risk-stratification model identified potential recurrence in 85% of high-risk patients and nonrecurrence in 76% of low-risk patients, which is dramatically superior to currently used pathological features.

CONCLUSIONS

We report a transcriptomic signature for risk-stratification and recurrence prediction that is superior to currently used clinicopathological features in patients with ICC.

摘要

背景和目的

即使在肝内胆管癌(ICC)中,肿瘤也经常复发,因此需要改进策略来识别复发风险最高的患者。我们进行了全基因组表达谱分析,以发现和验证与 ICC 患者复发相关的基因特征。

方法和结果

为了进行生物标志物的发现,我们分析了来自两个公共数据集的 ICC 肿瘤的全基因组转录组谱:癌症基因组图谱(n=27)和 GSE107943(n=28)。我们确定了一个由八个基因组成的面板(BIRC5[杆状病毒 IAP 重复包含 5]、CDC20[细胞分裂周期 20]、CDH2[钙粘蛋白 2]、CENPW[着丝粒蛋白 W]、JPH1[连接蛋白 1]、MAD2L1[有丝分裂阻滞缺陷 2 样 1]、NEIL3[Nei 样 DNA 糖苷酶 3]和 POC1A[POC1 中心粒蛋白 A]),该面板可在发现队列(AUC=0.92)和计算机模拟验证队列(AUC=0.91)中可靠地区分复发患者。接下来,我们分析了 241 例 ICC 患者的标本(训练队列,n=64;验证队列,n=177),然后进行 Cox 比例风险回归分析,以开发一种综合转录组面板并建立 ICC 复发的风险分层模型。随后,我们在临床队列中对该转录组面板进行训练(AUC=0.89;95%置信区间[CI]为 0.79-0.95),然后在独立的验证队列中评估其性能(AUC=0.86;95%CI 为 0.80-0.90)。通过将我们的转录组面板与各种临床病理特征相结合,我们建立了一种风险分层模型,该模型在识别复发方面的表现明显优于其他模型(AUC=0.89;单因素 HR=6.08,95%CI=3.55-10.41,P<0.01;多因素 HR=3.49,95%CI=1.81-6.71,P<0.01)。风险分层模型在高危患者中识别出 85%的潜在复发患者,在低危患者中识别出 76%的非复发患者,这明显优于目前使用的病理特征。

结论

我们报告了一种用于风险分层和复发预测的转录组特征,与 ICC 患者目前使用的临床病理特征相比,该特征具有更好的性能。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验