Liu Yue, Sun Qintao, Yu Peiping, Wu Yu, Xu Liang, Yang Hao, Xie Miao, Cheng Tao, Goddard William A
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
J Phys Chem Lett. 2021 Mar 25;12(11):2922-2929. doi: 10.1021/acs.jpclett.1c00279. Epub 2021 Mar 16.
Due to creating a passivated solid electrolyte interphase (SEI), high concentration (HC) electrolytes demonstrate peculiar physicochemical properties and outstanding electrochemical performance. However, the structures of such SEI remains far from clear. In this work, a ybrid and eactive molecular dynamics (HAIR) scheme is employed to investigate the concentration effect of SEI formation by simulating the reductive degradation reactions of lithium bis(fluorosulfonyl)imide (LiFSI) in 1,3 dioxalane (DOL) electrolytes at concentrations of 1 M, 4 M, and 10 M. The efficient HAIR scheme allows the simulations to reach 1 ns to predict electrolytes' deep products at different concentrations. The simulation findings show that the most critical distinction between HC and its low concentration (LC) analogue is that anion decomposition in HC is much more incomplete when only S-F breaking is observed. These insights are important for the future development of advanced electrolytes by rational design of electrolytes.
由于形成了钝化的固体电解质界面(SEI),高浓度(HC)电解质表现出独特的物理化学性质和出色的电化学性能。然而,这种SEI的结构仍远未明确。在这项工作中,采用了一种混合活性分子动力学(HAIR)方案,通过模拟1,3-二氧戊环(DOL)电解质中1 M、4 M和10 M浓度的双(氟磺酰)亚胺锂(LiFSI)的还原降解反应,来研究SEI形成的浓度效应。高效的HAIR方案使模拟能够达到1 ns,以预测不同浓度下电解质的深层产物。模拟结果表明,HC与其低浓度(LC)类似物之间最关键的区别在于,当仅观察到S-F键断裂时,HC中的阴离子分解要不完全得多。这些见解对于通过合理设计电解质来开发先进电解质具有重要意义。