Suppr超能文献

解析锂金属表面醚类和氟化醚类电解质的分解机制:基于CMD和AIMD模拟的见解

Deciphering the Decomposition Mechanisms of Ether and Fluorinated Ether Electrolytes on Lithium Metal Surfaces: Insights from CMD and AIMD Simulations.

作者信息

Du Fuming, Ye Tuo, Lv Tiezheng, Zhang Ruizhi, Liu Yu, Cai Songtao, Zhao Juangang, Zhao Bin, Liu Jianjun, Peng Ping

机构信息

School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China.

Research Institute of Automotive Parts Technology, Hunan Institute of Technology, Hengyang 421002, China.

出版信息

J Phys Chem B. 2024 Aug 29;128(34):8170-8182. doi: 10.1021/acs.jpcb.4c02538. Epub 2024 Aug 20.

Abstract

The performance of lithium metal batteries can be significantly enhanced by incorporating fluorinated ether-based electrolytes, yet the solid electrolyte interphase (SEI) formation mechanism on lithium metal surfaces remains elusive. This study employs classical and ab initio molecular dynamics simulations to investigate the decomposition mechanisms of lithium bis(fluoromethanesulfonyl)imide (LiFSI) in 1,2-diethoxyethane (DEE) and its fluorinated analogues, F5DEE and F2DEE, when in contact with lithium metal. Our findings indicate that F5DEE-based electrolytes favor the formation of a FSI-rich primary solvation shell around Li, while F2DEE-based electrolytes yield a solvent-rich environment. The normalized number density at the Li/electrolyte/Li interface shows a depletion of FSI anions in the electrochemical double layer (EDL) structure near the Li anode upon charging, with the distance between the first main peak of the FSI anion and Li anode following the order F5DEE < DEE < F2DEE. Analysis of the electronic projected density of states and charge transfer dynamics unveils the reductive dissociation pathways of FSI anions and fluorinated DEE solvents on the lithium metal surface, taking into account the influence of the EDL structure. DEE is identified as the most reduction-stable solvent, leading to the selective dissociation of FSI anions and the formation of an entirely inorganic SEI. In contrast, F2DEE displays a pronounced reduction tendency, forming an organic-rich SEI due to the solvent-dominated lowest unoccupied molecular orbital at the interface. F5DEE, competing with FSI anions for reduction, results in the formation of an inorganic-rich hybrid SEI with the highest LiF content. The simulation results correlate well with experimental observations and underscore the pivotal role of various fluorinated functional groups in the formation of EDL and SEI near the lithium metal surface.

摘要

通过加入含氟醚基电解质,锂金属电池的性能可得到显著提升,然而锂金属表面固态电解质界面(SEI)的形成机制仍不明确。本研究采用经典分子动力学和从头算分子动力学模拟,研究双(氟甲基磺酰)亚胺锂(LiFSI)在1,2 - 二乙氧基乙烷(DEE)及其氟化类似物F5DEE和F2DEE中与锂金属接触时的分解机制。我们的研究结果表明,基于F5DEE的电解质有利于在锂周围形成富含FSI的初级溶剂化壳层,而基于F2DEE的电解质则产生富含溶剂的环境。锂/电解质/锂界面处的归一化数密度显示,充电时锂阳极附近电化学双层(EDL)结构中的FSI阴离子减少,FSI阴离子的第一个主峰与锂阳极之间的距离顺序为F5DEE < DEE < F2DEE。对电子投影态密度和电荷转移动力学的分析揭示了考虑到EDL结构影响时,FSI阴离子和氟化DEE溶剂在锂金属表面的还原解离途径。DEE被确定为最具还原稳定性的溶剂,导致FSI阴离子选择性解离并形成完全无机的SEI。相比之下,F2DEE表现出明显的还原倾向,由于界面处溶剂主导的最低未占据分子轨道,形成富含有机成分的SEI。F5DEE与FSI阴离子竞争还原,导致形成LiF含量最高的富含无机成分的混合SEI。模拟结果与实验观察结果良好相关,并强调了各种氟化官能团在锂金属表面附近EDL和SEI形成中的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验