Qi Feng, Yu Peiping, Zhou Qiwei, Liu Yue, Sun Qitao, Ma Bingyun, Ren Xinguo, Cheng Tao
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China.
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, People's Republic of China.
J Chem Phys. 2023 Mar 14;158(10):104704. doi: 10.1063/5.0130686.
The performance of a lithium metal battery (LMB) with liquid electrolytes depends on the realization of a stable solid electrolyte interphase (SEI) on the Li anode surface. According to a recent experiment, a high-concentrated (HC) dual-salt electrolyte is effective in modulating the SEI formation and improving the battery performance. However, the underlying reaction mechanism between this HC dual-salt electrolyte and the lithium metal anode surface remains unknown. To understand the SEI formation mechanism, we first performed 95 ps ab initio Molecular Dynamics (AIMD) simulation and then extend this AIMD simulation to another 1 ns by using Hybrid ab Initio and Reactive Molecular Dynamics (HAIR) to investigate the deep reactions of such dual-salt electrolytes consists of lithium difluorophosphate and lithium bis(trifluoromethanesulfonyl)imide in dimethoxyethane (DME) solvent at lithium metal anode surface. We observed the detailed reductive decomposition processes of DFP and TFSI, which include the formation pathway of CF fragments, LiF, and LiPOF, the three main SEI components observed experimentally. Furthermore, after extending the simulation to 1.1 ns via the HAIR scheme, the decomposition reactions of DME solvent molecules were also observed, producing LiOCH, CH, and precursors of organic oligomers. These microscopic insights provide important guidance in designing the advanced dual-salt electrolytes for developing high-performance LMB.
具有液体电解质的锂金属电池(LMB)的性能取决于在锂阳极表面实现稳定的固体电解质界面(SEI)。根据最近的一项实验,高浓度(HC)双盐电解质在调节SEI形成和改善电池性能方面是有效的。然而,这种HC双盐电解质与锂金属阳极表面之间的潜在反应机制仍然未知。为了理解SEI的形成机制,我们首先进行了95皮秒的从头算分子动力学(AIMD)模拟,然后通过使用混合从头算和反应分子动力学(HAIR)将该AIMD模拟扩展到另外1纳秒,以研究由二氟磷酸锂和双(三氟甲磺酰)亚胺锂组成的双盐电解质在二甲氧基乙烷(DME)溶剂中在锂金属阳极表面的深度反应。我们观察到了DFP和TFSI的详细还原分解过程,其中包括CF片段、LiF和LiPOF的形成途径,这三种是实验中观察到的主要SEI成分。此外,通过HAIR方案将模拟扩展到1.1纳秒后,还观察到了DME溶剂分子的分解反应,产生了LiOCH、CH和有机低聚物的前体。这些微观见解为设计用于开发高性能LMB的先进双盐电解质提供了重要指导。