The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America.
Department of Applied Science and Technology, Politecnico di Torino, Torino, I-10129, Italy.
Nanotechnology. 2021 Apr 6;32(26). doi: 10.1088/1361-6528/abef2a.
Neural probes arebrain-invasive devices that record and manipulate neural circuits using electricity, light, or drugs. The capability to shine distinct wavelengths and control their respective output locations for activation or deactivation of specific groups of neurons is desirable but remains unachieved. Here, we discuss our probe's capability to deliver two independently controllable wavelengths (450 and 655 nm) in the location(s) of interest using nanophotonic directional couplers and ring resonators. These nanophotonics are scalable to dozens of outputs without significantly increasing the device's lateral dimensions. Furthermore, they are entirely passive and thus do not require electrical input that results in heat generation. Besides, we integrate a high number of electrodes for a simultaneous neural activity readout. Thus, we overcome the challenges associated with multicolor illumination for neural devices by exploiting the capability of miniaturizable, passive probes to deliver two different frequencies in several areas of interest. These devices open the path towards investigating theelectrical signal propagation under the individual or simultaneous activation or inhibition of distinct brain regions.
神经探针是一种脑内侵入式设备,它利用电、光或药物来记录和操纵神经回路。能够发射不同波长的光,并控制它们各自的输出位置,从而实现对特定神经元群的激活或抑制,这是人们所期望的,但目前仍未实现。在这里,我们讨论了我们的探针利用纳米光子定向耦合器和环形谐振器在感兴趣的位置传输两个独立可控波长(450nm 和 655nm)的能力。这些纳米光子技术可以扩展到几十个输出,而不会显著增加设备的横向尺寸。此外,它们完全是被动的,因此不需要产生热量的电输入。此外,我们还集成了大量的电极,以便同时进行神经活动读取。因此,我们通过利用可小型化的无源探针在多个感兴趣区域传输两种不同频率的能力,克服了神经设备多色照明相关的挑战。这些设备为研究在单独或同时激活或抑制不同脑区的情况下电信号的传播开辟了道路。